سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

DNA Image Analysis and Morphometry In Soft Tissue Sarcomas

Thesis

submitted in partial fulfillment of M.D. Degree
In Patholgy

BY

Rehab Monir Samaka M.B.B.Ch.M.Sc. Pathology

Supervisors

Prof. Dr. Kawther Amin Amer

Professor of Pathology
Faculty of Medicine, Menoufiya University

Prof. Dr. Thanaa El-Sayed Helal

Professor of Pathology
Faculty of Medicine, Ain-Shams University

Ass. Prof. Dr. Moshira Mohammed Abd El-Wahed

Assistant Professor of Pathology

Faculty of Medicine, Menoufiya University

Ass. Prof. Dr. Nancy Youssef Asaad

Assistant Professor of Pathology Faculty of Medicine, Menoufiya University

> Pathology Department Faculty of Medicine Menoufiya University

3

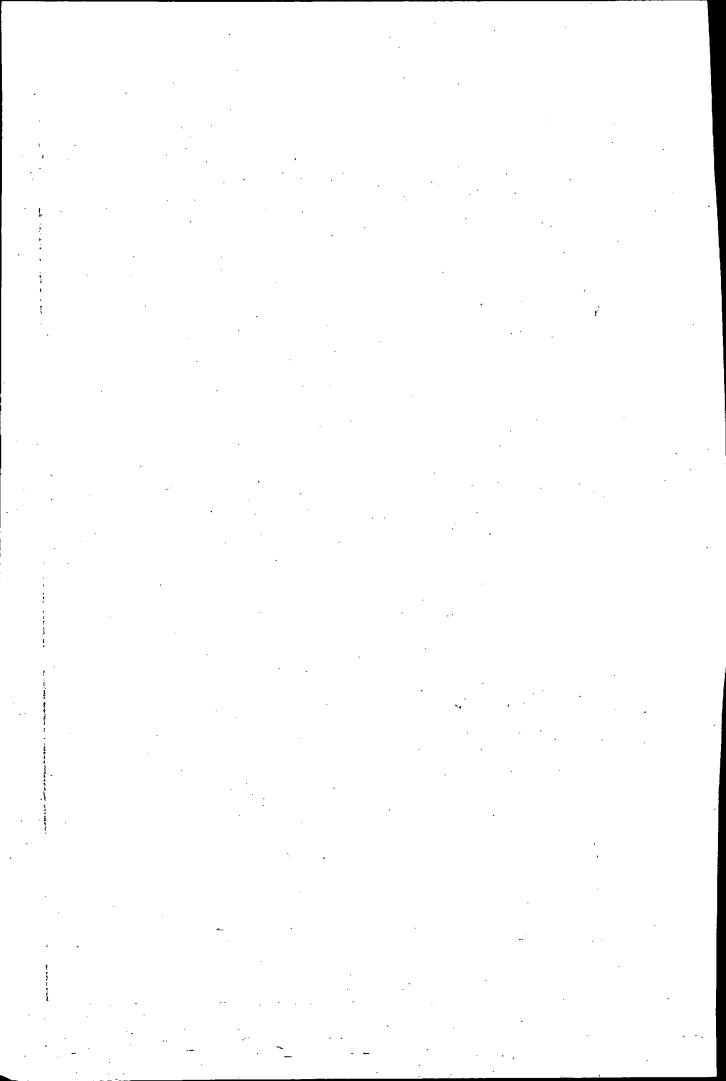
2005

10-88

ACCESS OFFICERS OF THE STATE OF

Acknowledgement

First of all I would like to express my deep thanks to *Allah*. Without his great blessing, I would never accomplish my work.


I am profoundly grateful to $Prof.\ Dr.\$ Kawther Amin Amer Professor of Pathology, Faculty of Medicine, Menoufyia University, for her inspiring supervision, valuable guidance and continuous encouragement.

I would like to express a deep sense of gratitude and thanks to *Prof. Dr.* Thanaa El-Sayed Helal Professor of Pathology, Faculty of Medicine, Ain-Shams University, for her supervision and unlimited help and encouragement during this work.

I am indebted for Dr. Moshira Mohammed Abd El-Wahed Associate Professor of Pathology, Faculty of Medicine, Menoufyia University, for continuous efforts, advises and her supervision.

My sincere thanks to **Dr.** Nancy Youssef Asaad Associate Professor of Pathology, Faculty of Medicine, Menoufyia University, for her advises and encouragement during this thesis.

Virtually I would like also to express my deep thanks and appreciation to all responsibles about the *National Cancer Institute*, Cairo University especially in the Pathology department for their kind help and cooperation.

Contents

Serial number	Subject	Page
1	List of abbreviation	number i-ii
V	List of tables	iii-vi i
√	List of figures	viii
I	Introduction	1-2
II	Aim of the work	3
III	Review of literature	4- 100
	General Consideration	4
	 Epidemiology 	4.
	■ Pathogenesis	7
	Classifications of STT	14
	■ Grading Systems	20
	Staging systems	24
	Prognosis	27
	Liposarcoma	35
	 Malignant fibrous histiocytoma 	47
,	 Malignant peripheral nerve sheath tumors 	54
	Rhabdomyosarcoma	57
	 Leiomyosarcoma 	63
	 Fibrosarcoma 	65
,	 Tumors of Uncertain differentiation 	66
·	Synovial sarcoma	67
	Epitheliod sarcoma	69
:	 Clear cell sarcoma of soft tissue 	71
	 Alveolar soft part sarcoma 	72
·	 Malignant mesenchymoma 	73
	 Intermediate soft tissue tumors 	74
	 Extrapleural solitary fibrous tumor 	75
	 Dermatofibrosarcoma protubrans 	76
	 Kaposi sarcoma 	77
	 Hemangioendothelioma 	78
	 Angiomatoid fibrous histiocytoma 	79
	Image analysis	81
	- Image cytometric analysis in pathology	81
	- Application of image cytometry	83
	- Comparison of image analysis with flow cytometry	85
	- Future prospects for ICM in pathology	87
	DNA Ploidy	89
j	- Clinical significance of image cytometry	93

Contents

- DNA ploidy in bone tumors 94 - DNA ploidy in soft tissue tumors 95 Morphometric Analysis 97 Nuclear morphometry and DNA ploidy 100 IV Material and Methods 101-119 V 120-187 Results 188-213 VI Discussion VII 214-217 Summary VIII Conclusions 218 IX Recommendations 219 X. References 220-261 XI **Arabic Summary**

WHO	World Health Organization
STS	Soft Tissue Sarcoma
RMS	Rhabdomyosarcoma
MPNST	Malignant Peripheral Nerve Sheath Tumor
MFH	Malignant Fibrous Histiocytoma
NRSTS	Non- RMS Soft Tissue Sarcoma
AIDS	Acquired Immune Deficiency Syndrome
RBI	Retinoblastoma I
U.S.	United State
HHV8	Human Herpes Virus 8
DNA	Deoxyribo nucleic acid
NFI	Neurofibromatosis
NCI	National Cancer Institute
AJCC	American Joint Committee on Cancer
FNCLCC	Federation Nationale de Centres de Lutte Contre Le Cancer
TNM	Tumor, Node and Metastasis
GRI	Growth Rate Index
EORTC	European Organization for Research and Treatment of
	Cancer
PCNA	Proliferating Cell Nuclear Antigen
MDR	Multidrug Resistance
FAS	Fatty Acid Synthase
MC	Mast Cell
ALT	Atypical Lipomatous Tumors
WD	Well Differentiated liposarcoma
RGCS	Ring and Giant marker Chromosomes
MDM2	Murian Double Minute 2
GLI	Glioma Gene I
SAS	Sarcoma Amplified Sequence
RGC	Giant Marker Chromosomes
MLS	Myxoid Liposarcoma
RC	Round Cell liposarcoma
CEA	Carcino Embryonic Antigen
ERMS	Embryonal Rhabdomyosarcoma
ARMS	Alveolar Rhabdomyosarcoma
SIOP	Society of Pediatric Oncology
IRS	Intergroup Rhabdomyosarcoma
SS	Synovial Sarcoma
CK	Cytokeratin
ES	Epitheloid sarcoma
ASPS	Alveolar Soft part Sarcoma
SFT	Solitary Fibrous Tumor
· DFSP	DermatoFibroSarcoma Protuberans

List of abbreviation is

750	Y
KS	Kaposi sarcoma
AFH	Angiomatoid Fibrous Histiocytoma
ICM	Image Cytometry
CAS	Cell Analysis System
FCM	Flow Cytometery
DI	DNA Index
PAS	Periodic Acid- Schiff
HPF	High power Field
SD	Stander Deviation
M : F	Male to Female ratio
NS	Not Significant
Min-Max	Minimum to Maximum
HE	Hemangioendothelioma
MI	Mitotic Index
AI	Apoptotic Index
PIS	Prognostic Index for distant metastasis and survival
IF	Inflammatory infiltrate
MMND	Mean Maximal Nuclear Diameter
MND	Maximal Nuclear Diameter
MmND	Mean minimal nuclear Diameter
mND	Minimal nuclear Diameter
MNA	Mean nuclear area
NA	Nuclear area
MNP	Mean nuclear perimeter
NP	Nuclear perimeter
MAR	Mean Axis Ratio
AR	Axis Ratio
MLS	Mean Longest to Shortest ratio
LS	Longest to Shortest ratio
OR	Odd Ratio
CI	Confidence Interval
ms	Months

	,	
Table number	Table content	Page
I	Median age of soft tissue sarcoma (STS).	5
II	The most common histological types of STS in both age groups.	6
III	National Cancer Institute histopathologic grading of STS.	27
IV	National Cancer Institute three-grade system.	27-28
V	FNCLCC grading system: definition of parameters.	28-29
VI	The AJCC staging system.	31
VII	Definitions of anatomic extent in the musculoskeletal tumor society staging system.	32
VIII	The musculoskeletal tumor society staging system.	32
ΙX	WHO classification of liposarcoma.	42
\mathbf{X}	Prognosis of well-differentiated liposarcoma.	48
XI	Clinically useful parameters measured by image analysis.	90
XII	Applications for quantitative immunocytochemistry by image analysis.	92
XIII	Clinical significance of DNA image cytometry in diagnosis, prognosis and management of solid tumors.	98
Table 1	Comparison between intermediate and malignant soft tissue tumors regarding clinical data.	121
Table 2	Comparison between different types of intermediate soft tissue tumors regarding clinical data.	122
Table 3	Comparison between different types of STS regarding clinical data.	123
Table 4	Comparison between different variants of liposarcoma cases regarding clinical data.	124
Table 5	Comparison between different variants of	124

rhabdomyosarcoma cases regarding clinical data. Table 6 Comparison between 125 types of differentiation STS cases regarding clinical data. Table 7 Comparison between low grade and high grade soft 126 tissue sarcoma regarding clinical data. Table 8 Comparison between low stage and high stage soft 126 tissue sarcoma regarding clinical data. Comparison between intermediate and malignant Table 9 128 soft tissue tumors regarding pathologic parameters. Table 10 Comparison between different types of intermediate 129 soft tissue tumors regarding pathologic parameters. between different types of STS Table 11 Comparison 130 regarding pathologic data. Table 12 Comparison between different variants of 131 liposarcoma cases regarding pathologic data. Table 13 Comparison ' different between variants 132 of rhabdomyosarcoma regarding pathologic data. Table 14 Comparison between 132 types of uncertain differentiation STS cases regarding pathologic data. Table 15 Comparison between low grade and high grade soft 133 tissue sarcoma regarding pathologic parameters. Table 16 Comparison between low stage and high stage soft 134 tissue sarcoma regarding pathologic parameters. Table 17 DNA ploidy pattern and DI in intermediate and 135 malignant soft tissue tumors. Table 18 DNA ploidy pattern and DI in different histologic 136 types of intermediate soft tissue tumors. Table 19 DNA ploidy pattern and DI in different histologic 137 types of STS Table 20 Relationship between DNA ploidy 138 clinical data in STS cases Table 21 Relationship between DNA ploidy pattern and 139 pathologic parameters in STS cases.