

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Effect of Two Delayed Dentin Sealing Protocols versus Immediate Dentin Sealing on Tensile Bond Strength of Two Ceramic Restoration Materials

-A Thesis-

Submitted for fulfillment of requirements of the Master's degree of science in fixed prosthodontics, crown and bridge department,

Faculty of Dentistry, Ain Shams University

By

Shaimaa Ibrahim Abdulrahman Abdullah

B.D.S Faculty of Dentistry, Ain Shams University (2015)

E-mail:shaimaa.ibra@gmail.com

Phone number: +201027711519

Faculty of Dentistry
Ain Shams University
2021

Supervisors

Dr. Maged Mohammed Mohammed Zohdy

Associate Professor of Fixed Prosthodontics, Fixed Prosthodontics Department Faculty of Dentistry, Ain Shams University

Dr. Doaa Taha Sayed Taha

Lecturer of Fixed Prosthodontics, Fixed Prosthodontics Department Faculty of Dentistry, Ain Shams University

Acknowledgment

First and foremost, I feel always grateful to **ALLAH**, the Most Kind and Most Merciful.

I would like to express my respectful thanks and profound gratitude to **Dr. Maged Zohdy**, Associate Professor of Fixed Prosthodontics department, Faculty of Dentistry, Ain Shams University, for his keen guidance, kind supervision, valuable advice and continuous encouragement and support, which made possible the completion of this work.

I wish to introduce my deep appreciation to **Dr. Doaa Taha,** Lecturer of Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University, for her kindness, meticulous supervision and effort in this work.

I also would like to express my sincere thanks to my dear professors, colleagues, and staff members of Fixed Prosthodontics Department, Faculty of Dentistry, British University in Egypt.

Finally, I'm thankful to all staff members of Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University.

Dedication

This work is dedicated to ...

My beloved parents, to whom I owe everything I ever did in my life and will achieve.

My dear brothers for always being there for me.

And my fiancé for his continuous support and encouragement.

List of Contents

Title	Page No.
List of Tables	vi
List of Figures	vii
Introduction	1
Review of Literature	4
Statement of Problem	34
Aim of the Study	35
Materials and Methods	36
Results	69
Discussion	76
Summary	86
Conclusion	88
References	
Arabic Summary	

List of Tables

No.

Table No.	Title	Page
Table (1):	Materials used in the study	36
Table (2):	Chemical Composition of IPS e.max CAD bl in % by weight	
Table (3):	Physical properties of IPS e.max CAD block.	38
Table (4):	Chemical composition of vita enamic	38
Table (5):	Physical properties of vita enamic	39
Table (6):	Chemical composition of universal adhesive	40
Table (7):	Chemical composition of RelyX Ultimate	40
Table (8):	Experimental factorial design	48
Table (6):	Mean ± standard deviation (SD) of tensile be strength (MPa) for different materials a sealing protocols	and
Table (10):	Mean ± standard deviation (SD) of tensile be strength (MPa) for different sealing protoc for Emax	cols
Table (11):	Mean ± standard deviation (SD) of tensile be strength (MPa) for different curing protocols DDS samples for Emax	s in
Table (12):	Frequencies (n) and Percentages (%) of mod failure in subgroups for Emax	
Table (13):	Mean ± standard deviation (SD) of tensile be strength (MPa) for different sealing protoc for Vita Enamic	cols
Table (14):	Mean ± standard deviation (SD) of tensile be strength (MPa) for different curing protocols DDS samples for Vita Enamic	s in
Table (15):	Frequencies (n) and Percentages (%) of mod- failure in subgroups for Vita Enamic	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	IPS e.max CAD block	37
Figure (2):	Vita enamic CAD block	
Figure (3):	Single bond universal adhesive 3M ESPE	39
Figure (4):	Adhesive resin cement RelyX Ultimate	40
Figure (5):	Orafil-G temporary filling material	41
Figure (6):	Co-jet Air abrasion	41
Figure (7):	SILAN-IT silane coupling agent	42
Figure (8):	CERAM-ETCH 9% hydrofluoric acid gel	42
Figure (9):	Surveyor	
Figure (10):	Mounted molar in acrylic resin mold	44
Figure (11):	Low speed diamond saw	45
Figure (12):	Exposing occlusal dentin	46
Figure (13):	a) exposed dentin, b) occlusal view	46
Figure (14):	Schematic presentation of the study	48
Figure (15):	Temporization of DDS group	49
Figure (16):	Sealing dentin with adhesive	50
Figure (17):	Temporization of IDS group	51
Figure (18):	Milling machine forming ceramic cylinder	52
Figure (19):	6mm Ceramic cylinders: a) Vita enamic, b) e	-max
	cylinders	53
Figure (20):	Low speed diamond saw cutting 3mm cer	ramic
	discs: a) vita enamic, b) emax	53
Figure (21):	Caliper confirming the discs measurements.	54
Figure (22):	Crystallization cycle of e.max in programat p	310.
		55
Figure (23):	emax discs inside the furnace	
Figure (24):	Crystallized emax discs	56
Figure (25):	e-max finishing and polishing kit	
Figure (26):	e-max glaze	57
Figure (27):	Vita enamic polishing set	57
Figure (28):	a. Ceramic etching, b. ceramic silanization	58
Figure (29):	Pre curing of the adhesive layer	
Figure (30):	Co-curing of adhesive, cement, and restor-	ation
	together	60
Figure (31):	Thermal cycling simulation process	61
Figure (32):	Custom made stainless steel mold	62
Figure (33):	Universal testing machine tensile test	63

List of Figures

Fig. No.	Title Page	No.
Figure (34):	Diagramatic illustration of specimen-mold	
Figure (35):	complex	
Figure (36):	Diagrammatic illustration of failure modes	
Figure (37):	Adhesive failure between dentin and resin cement, a) bare dentin, b) Ceramic disc and resin	00
	layer	
Figure (38):	Mixed failure	67
Figure (39):	Adhesive failure between ceramic and resin cement	67
Figure (40):	Bar chart showing average tensile bond strength (MPa) for different materials and sealing	
Figure (41):	Bar chart showing average tensile bond strength	
Figure (42):	(MPa) for different sealing protocols for Emax Bar chart showing average tensile bond strength (MPa) for different curing protocols in delayed	
Figure (43):	sealing samples for Emax Bar chart showing average tensile bond strength (MPa) for different sealing protocols for Vita	
Figure (44):	Enamic	73
	(MPa) for different curing modes in delayed sealing samples for Vita Enamic	74
Figure (45):	Stacked bar chart showing percentage of mode of failure in different sealing protocols for Vita	
	Enamic	75

INTRODUCTION

The use of resin luting cements has increased in recent years. Resin cements provide better retention, esthetics and greater resistance to dissolution over conventional cements. They are essential for the cementation of indirect adhesive restorations such as inlays, onlays, veneers and all-ceramic crowns in providing strength to the bonded assembly⁽¹⁾. Resin luting cements are, however, technique sensitive and their use demands a careful implementation of a series of steps including the application of enamel and dentin adhesives ⁽¹⁾.

Cementation is a process dependent on several factors, such as the type of substrate, type of adhesive substance(s), humidity of the environment, and operator's ability in performing the bonding procedure. With regard to the dental substrates, adhesive procedures are usually performed to achieve bond to dental enamel and dentin⁽²⁾. Since the advent of adhesive dentistry, the composition of the materials and the clinical methods used for adhesion has changed⁽³⁾.

Most prosthodontic adhesive restorations require a provisionalization phase. A considerable decrease in bond strength after cementation has been identified with eugenol-free formulations. This has been related to the obliteration of dentinal tubules with provisional material residues which avoid resin tag formation. Therefore, elimination of provisional luting agent (PLA) from the tooth surface is crucial. There have been different attempts to accomplish complete removal of PLA. Residual PLA was evident on dentin surfaces after cleaning with pumice and water⁽⁴⁾.

1

Introduction

Applying dental adhesive before impression making, called immediate dentin sealing (IDS) technique. It provides adhesion to a freshly cut dentin, which is suggested to be ideal for bonding. When the adhesive is applied only at the moment of definitive cementation, the approach is known as delayed dentin sealing (DDS)⁽⁵⁾.

The primary advantage of immediate dentin sealing technique is to protect the tooth from the consequences of micro leakage by sealing the dentininal tubules that are vulnerable to bacterial invasion immediately after completion of the preparation ⁽⁶⁾. Sealing of the dentinal tubules also reduces sensitivity by preventing hydraulic fluid flow within the dentinal tubules, which is responsible for post-operative sensitivity, thus improving patient comfort. It has been shown that cements can penetrate the dentinal tubules before the final setting and microorganisms and their by-products can also penetrate into the patent dental tubules post- operatively⁽⁵⁾.

Therefore, the early sealing of dentininal tubules also may prevent collapsing of collagen fibrils and occlusion of dentinal tubules by provisional luting agent remnants. Moreover, by using adhesive containing fillers in IDS, more stable and homogeneous dentin-resin hybrid layer was acquired⁽⁵⁾.

The clinical success of ceramic indirect restorations is attributed to the reliable bond between adhesive cementing systems (resin cements/bonding agents) and mineralized dental tissues⁽⁷⁾. However, as light intensity reaching the resin cement is strongly attenuated by either distance from the light source, or from the absorbing characteristics through the indirect restorative material⁽⁸⁾, dual-cured resin materials have been developed.

Resin adhesives and resin cements are found in self-cure, light-cure and dual cure formulations. The degree of polymerization plays a vital role in determining the ultimate biological, physical and mechanical properties of the material. It is significant to establish a strong bond between restoration and dentin ⁽⁹⁾.

A significant increase in bond strength has been suggested when the adhesive was cured prior to application of the resin cement in indirect restorations. However, if the thickness of the polymerized adhesive layer is high, either generally or in localized areas, this adhesive pre-curing step could prevent complete seating of the indirect restoration ⁽¹⁾

Resin luting agent should provide bond strengths need to be sufficient to resist stress generated by its polymerization shrinkage. Bond strengths also depend on the adhesive capacity to various dental substrates. Adhesive capacity is normally evaluated *in vitro* by shear and tensile tests⁽¹⁰⁾.

This study was performed to evaluate the interfacial quality of the indirect ceramic restorations and dentin surface sealed with different dentin sealing protocols.

REVIEW OF LITERATURE

1. Indirect restorations:

Over the last few decades, the development of new materials and advances in restorative techniques in adhesive dentistry have made possible reinforcement of weakened dental structure⁽¹¹⁾. The strengthening effects of adhesive restorations have been examined in several studies. Teeth with wide mesio-occlusodistal (MOD) cavities restored with amalgam have frequently shown cusp failure due to the inability of this material to strengthen weakened cusps⁽¹²⁾. Bell and others showed that large MOD cavities restored with amalgam frequently develop cusp failure because cracks are propagated under constant functional occlusal forces. Thus, teeth with large cavities are usually restored with onlays instead of inlays⁽¹³⁾, because when a significant amount of the tooth structure is lost, there is an increase in the fragility and susceptibility to fracture of the cusps⁽¹⁴⁾.

Reinforcing effect of adhesive restorations have long been known. Conservative bonded restorations are more and more preferred to traditional metal restorations ⁽¹⁵⁾.

Upon a detailed biomechanical analysis of the remaining tooth structure, the tooth should be prepared minimally invasively, preserving as much sound tissue as possible, while removing any tooth parts with doubtful stability. In this sense, thin unsupported cusps must be reduced, as this will increase the durability of the restoration⁽¹⁶⁾. The most difficult steps in the fabrication of large direct posterior composite restorations are the creation of a correct form with good occlusal anatomy as well as of well-