

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

كليه العلوم - قسم الكيمياء

Synthesis and industrial applications of superabsorbent polymers

A Thesis submitted By

Doaa Samir Abd El-Rehim Mahmoud

Assistant Researcher, Department of Polymers and Pigments, Department, National Research Centre, Dokki, Cairo, Egypt

For the requirement of Ph.D. Degree of Science in Chemistry

Supervised By

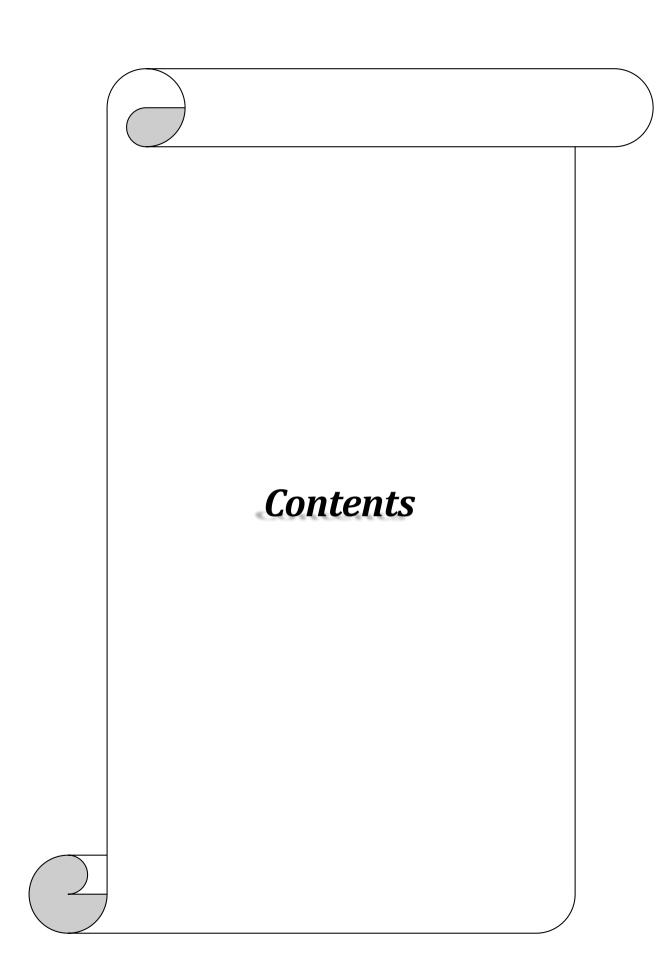
Prof. Dr. Abd El-Guad Mohamed RabiaProfessor of Organic Chemistry, Faculty of Science,
Ain shams University

Prof. Dr. Salwa Hassan El-SabbaghProfessor of Polymer physics, Polymers and Pigments
department, National Research Center

Prof. Dr. Medhat Lotfy Tawfic
Professor of Polymer Chemistry and Pigments,
Polymers and Pigments department,
National Research Center

To Department of Chemistry
Faculty of Science, Ain Shams University
(2021)

Acknowledgement


First, my greatest praise and sincere thankfulness should be offered to **ALLAH**, for the uncountable blessings and continuous support to strive for the best I could do with everything I did.

Next, I would like to express my sincere thanks and gratitude to **Prof. Dr. Abd El guad Rabee,** Professor of organic chemistry, Chemistry Department, Faculty of Science, Ain Shams University, for his encouragement to finish this work, help, valuable comments, and complete revision of the thesis.

I wish to express my deep appreciation and gratitude to Prof. Dr. Salwa Hassan El-Sabbagh and Prof. Dr. Medhat Lotfy Tawfic, Polymers and Pigments Department, National Research Centre, Cairo, Egypt, for her suggesting and supervising the presented topic, extensive help and their strong support in all possible ways, particularly in difficult times. They taught me how to think deeply, and to listen to the different scientific opinions with an opened mind. With my best wishes for them to be in a good health all their life.

In addition, I owe thanks to all the Member of Polymers and Pigments Department, National Research Centre, Cairo, Egypt, for their cooperation. Last but not the least, I am heartedly grateful to my husband Abed Ali who have always supported me.

Doaa Samir

Contents

No.	Title			
	List of Figures			
	List of	Tables	V	
	List of	Abbreviation	vi	
	Abstrac		viii	
		Chapter I		
Part	A: Intr	oduction		
1.1	Hydrog	gels	1	
	1.1.1	Classification of hydrogels	2	
1.2	Supera	bsorbent polymer hydrogels	4	
	1.2.1	Important properties of SAPs	5	
	1.2.2	Water absorption capacity	6	
		1.2.2.1 Principle of swelling	7	
	1.2.3	Preparation techniques	9	
	1.2.4	Factors affecting the properties of SAPs	10	
		1.2.4.1. Monomers for production of SAPs	10	
		1.2.4.2. Initiator and cross-linker for	12	
		production of SAPs		
	1.2.5.	Applications of superabsorbent polymers	16	
		1.2.5.1. Superabsorbent polymer in rubber	17	
		1.2.5.2. Superabsorbent polymer in concrete	18	
Part B: Literature review				
	1.1	Synthesis and characterization of superabsorbent polymers	22	
	1.2	Superabsorbent polymer in rubber	26	
	1.3.	Superabsorbent polymer in concrete	27	

	Objective of the Work		29	
	Chapter II			
			Experimental part	
2.1.	Materia	als and che	emicals	31
2.2	Prepara	ations of su	iperabsorbent polymer	32
	2.2.1.	Synthesis	of sodium polyacrylate	32
	2.2.2	Synthesis	s of co-polymers	33
			Synthesis of poly(sodium acrylate- co- glycidyl methacrylate)	33
		2.2.2.2.		35
			Synthesis of ploy(sodium acrylate- co-maleic anhydride)	36
2.3.	superal	osorbent po	olymers evaluation	38
	2.3.1.	Determin	ation of gel fraction	38
	2.3.2.	The water	r absorbency	38
	2.3.3.	Viscosity	measurement	39
2.4.	Method	ds of instru	ls of instrumental analysis	
	2.4.1.	Infrared S	Spectroscopy	39
	2.4.2.	High-reso	olution transmission electron	40
		microscp	e	
	2.4.3.	Thermal a	gravimetric analysis	40
	2.4.4.	Different	ial Scanning Calorimeter	40
2.5.	Synthe	sis of rubb	er roofing sheet (sodium	40
	polyacı	polyacrylate/NR)		
	2.5.1.	Water abs	sorbance test	41
	2.5.2	The densi	ity measurement	42
				1

	252	Coopping alastron misroganny	12
	2.5.3.	Scanning electron microscopy	43
2.6.	Synthes	sis concrete using super absorbent polymer	43
	2.6.1.	Mix proportion	43
	2.6.2.	Methodology	44
	2.6.3	Compressive strength test	44
	l .	Chapter III	
		Results and discussion	
Part	A: Cha	racterizations of superabsorbent polymers	
3.1.	Charac	terization of the prepared sodium polyacrylate	47
	3.1.1.	FTIR spectroscopy	47
	3.1.2.	High resolution transmission electron	48
		microscopy (HRTEM) analysis	
	3.1.3	Thermal gravimetric analysis (TGA)	49
	3.1.4.	DSC analysis	50
	3.1.5.	Gel Fraction	51
	3.1.6.	Water absorbency	52
	3.1.7	Viscosity measurement	55
3.2.	Charac	terization of cross ross-linked sodium acrylate	59
	and gly	vcidyl methacrylate	
	3.2.1.	FTIR spectroscopy	59
	3.2.2.	HRTEM analysis	61
	3.2.3	TGA analysis	63
	3.2.4	DSC analysis	64
	3.2.5.	Gel Fraction	66
	3.2.6	Water absorbency	67
	3.2.7	Viscosity measurement	75
3.3.	Charac	terization of cross-linked sodium acrylate	82
	and ma	lleic anhydride	
	3.3.1.	FTIR spectroscopy	82
	3.3.2.	<u> </u>	84

	3.3.3.	TGA and	alysis	86
	3.3.4.	DSC analysis		87
	3.3.5	Gel Frac	Gel Fraction	
	3.3.6	Water ab	osorbency	89
	3.3.7	Viscosit	y measurement	97
3.4.	Charac	terization	of cross-linked sodium acrylate and	106
	methyl	methacry]	late	
		3.4.1.	FTIR spectroscopy	106
		3.4.2.	HRTEM analysis	108
		3.4.3.	TGA analysis	110
		3.4.4.	DSC analysis	110
		3.4.5.	Gel Fraction	112
		3.4.6.	Water absorbency	113
		3.4.7.	Viscosity measurement	120
Part B: Applications of superabsorbent polymers				
	3.5.	Applicat	ions in rubber	129
		3.5.1.	Water swelling properties	129
		3.5.2.	The density measurement	130
		3.5.3.	SEM micrographs	131
	3.6.	Applicat	ions in concrete	133
Summary and conclusion			138	
References			143	
			Publication	
			Arabic Summary	
			Arabic Cover	

List of figures

	Title	Page
Fig.1.1.	preparation of hydrogels by cross-linking of polymers	2
Fig.1.2.	Super Absorbent Polymer (SAP)	4
Fig.1.3.	SAP after addition of water	5
Fig.1.4.	Effect of water on SAPs	7
Fig.1.5.	Schematic representation of swollen SAPs network	8
Fig.1.6.	Schematic diagram of hydrogel	9
Fig.1.7.	Neutralization of acrylic acid	11
Fig.1.8.	Cross-linking in superabsorbent polymer	13
Fig.1.9.	Examples on SAPs cross-linking agents	14
Fig.1.10.	Synthetic routes for sodium polyacrylate	56
Fig. 1.11.	Schematic representation of effect of SAPs	19
Fig.3.1.	FT-IR of sodium polyacrylate with different content of MBA	47
Fig.3.2.	TEM for the prepared SAPs (a) NaPA1, (b) NaPA2, (c) NaPA3, (d) NaPA4 and (e) NaPA5	48
Fig.3.3	Variation of weight loss of NaPA with temperature using different content of cross-linker	49
Fig.3.4.	The relation between glass transition temperature of NaPA and cross-linker content	50
Fig.3.5.	Variation of gel fraction of NaPA with different contents of MBA	51
Fig.3.6	Effect of time on water absorbency of NaPA in distilled water	52

Fig.3.7.	Influence of saline concentration on	53
	absorbance capacity of NaPA cross-linked	
	with MBA	
Fig.3.8.	Absorbance behavior of NaPA in different	54
	fluids: distilled water, tap water and 0.5%	
	NaCl aqueous solution	
Fig.3. 9.	The effect of (a) cross-linker (MBA) content,	57
	(b) time and (c) concentrations of NaPA on the	
	viscosity	
Fig.3.10.	The effect of MBA content on (a) the viscosity	58
	and (b) volume fraction before and after	
	grinding	
Fig.3.11.	FTIR spectra of poly(NaA-co-GMA)	59-60
Fig.3.12.	TEM for prepared poly(NaA-co-GMA)	61-62
Fig.3.13.	Variation of weight loss of poly(NaA-co-	63
	GMA) with temperature	
Fig.3.14.	Gel fraction of cross-linked poly(NaA-co-	66
	GMA)	
Fig.3.15.	Effect of time on water absorbency of	67-68
	different poly(NaA-co-GMA) in distal water	
Fig.3.16.	Effect of MBA and GMA content on water	70
	absorbency of different poly(NaA-co-GMA) in	
	distal water after 2 h	
Fig.3.17.	Effect of the saline solution concentration on	71-72
	water absorbency ratio of cross-linked	
	poly(NaA-co-GMA) after 2h	
Fig.3.18.	Absorbance behavior of poly(NaA-co-GMA)	73-74
	in different fluids: distilled water, tap water and	
	0.5% NaCl aqueous solution	
Fig.3.19.	The effect of cross-linker (MBA) content on the	75
	viscosity of poly(NaA-co-GMA) after 48 h	
Fig.3.20.	The effect of soaking time on the viscosity of	76-77
	poly(NaA-co-GMA)	