

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

A NUMERICAL STUDY OF OPTIMUM NORMALIZED PREMIXING LENGTH FOR TURBULENT PARTIALLY PREMIXED FLAME IN A CONCENTRIC FLOW CONICAL NOZZLE BURNER

By

Eng. Ahmed Said Hanafy Mhmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Mechanical Power Engineering

A NUMERICAL STUDY OF OPTIMUM NORMALIZED PREMIXING LENGTH FOR TURBULENT PARTIALLY PREMIXED FLAME IN A CONCENTRIC FLOW CONICAL NOZZLE BURNER

By Eng. **Ahmed Said Hanafy Mhmoud**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Mechanical Power Engineering

Under the Supervision of

Prof. Dr. Hatem Omar Hariedy

Associate Professor
Mechanical Power Engineering
Department

Faculty of Engineering, Cairo University

Dr. Mohamed Fayed Zayed

Assistant Professor
Mechanical Power Engineering
Department
Faculty of Engineering, Cairo University

A NUMERICAL STUDY OF OPTIMUM NORMALIZED PREMIXING LENGTH FOR TURBULENT PARTIALLY PREMIXED FLAME IN A CONCENTRIC FLOW CONICAL NOZZLE BURNER

By Eng. **Ahmed Said Hanafy Mhmoud**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Mechanical Power Engineering

Approved by the Examining Committee

Associate.Prof. **Hatem Omar Hariedy** Thesis Main Advisor

Prof. Dr. **Hindawy Salem Mohamed**Internal Examiner

Prof. Dr. Mahmoud Abdel-Fatah El Kady External Examiner

Professor, Faculty of Engineering, Al-Azhar University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 **Engineer's Name:** Ahmed Said Hanafy Mhmoud

Date of Birth: 26/9/1986 **Nationality:** Egyptian

E-mail: En_ahmed86@yahoo.com

Phone: 01004426355

Address: 13 Ahmed Mukhaimer Street,

Nozha, Cairo, Egypt

Registration Date: 1/10/2017 **Awarding Date:** / /2021

Degree: Master of Science

Department: Mechanical Power Engineering

Supervisors:

Associate Prof. Hatem Omar Hariedy

Dr. Mohamed Fayed Zayed

Examiners:

Prof. Hatem Omar Hariedy (Thesis main advisor)
Prof. Dr. Hindawy Salem Mohamed (Internal examiner)
Prof. Dr. Mahmoud Abdel-Fatah El Kady (External examiner)

Professor, Faculty of Engineering, Al-Azhar University

Title of Thesis:

A numerical study of optimum normalized premixing length for the turbulent partially premixed flame in a concentric flow conical nozzle burner

Key Words:

Partially premixed; Conical nozzle burner; Mixing field; Stability; Turbulent flame

Summary:

The current work involves a numerical study to validate the numerical models to investigate the effects of the normalized premixing length (L/D) at a certain overall jet equivalence ratio (Φ) and a certain Reynolds number (Re) on the mixing field structure in a concentric flow burner. Also, involves finding the best normalized premixing length, L/D, in a concentric flow burner using validated numerical models.

Finally, a numerical study of the partially premixed flame structure in a Concentric Flow Conical Nozzle (CFCN) burner by using numerical models, which included calculating the flame curvature and discussing the influence of equivalence ratio on the structure of the flame and finding the lowest value of the equivalence ratio at which the flame be sustainable.

All numerical studies were carried out for air-natural gas mixture using ANSYS 2020 R2 Package.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Ahmed Said Hanafy Mhmoud Date: ../../2021

Signature:

Acknowledgments

All praises and thanks due to Allah, the most gracious, the most merciful, for providing me with the patience to complete this work.

I am grateful to my supervisors, Associate prof. Dr. Hatem Omar Hariedy and Dr. Mohamed Fayed Zayed to their guidance, advice, and encouragement toward the successful completion of this work. They were helpful, reading and correcting me all the way.

I would also like to send my thanks and gratitude to my father, my mother, my wife, and my family for their care and encouragement for me to finish this work in a suitable form and time.

I would like to express my sincere gratitude to all the people who have been associated with this work, helped me in it, and made it a worthwhile experience.

Table of Contents

DISCLAIM	ER	I
ACKNOWI	LEDGMENTS	II
LIST OF TA	ABLES	V
LIST OF FI	GURES	VI
NOMENCL	ATURE	VIII
ABSTRAC	Γ	IX
CHAPTER	1: INTRODUCTION	1
1.1.	Overview	1
1.2.	FLAME CLASSIFICATION	2
1.3.	MODELS OF TURBULENT COMBUSTION	3
1.4.	STABILITY OF FLAME	3
1.5.	Objective	3
1.6.	THESIS OUTLINE	4
CHAPTER	2 : LITERATURE REVIEW	5
2.1.	Introduction	5
2.2.	LABORATORY AND NUMERICAL STUDIES OF A CONCENTRIC FLOW CO	NICAL
Nozzle	(CFCN) BURNERS	5
2.3.	CONCLUSIONS AND SCOPE OF THE PRESENT WORK	16
CHADTED	3 : MODELING OF CONCENTRIC FLOW AND CONCENTRI	IC.
	S: MODELING OF CONCENTRIC FLOW AND CONCENTRIC	
3.1.	PHYSICAL MODEL	
3.2.	System modelling	
3.3.	GOVERNING EQUATIONS AND MODELS USED IN THE PRESENT STUDY	
3. 3.1.	Mass conservation equation	
3. 3.2.	Momentum conservation equation	
3. 3.3. 3. 3.4.	Energy conservation equation The discrete ordinates radiation model	
3. 3.4. 3. 3.5.	Turbulence model	
3.3.3.		
3.3.	•	
3. 3.6.	Species transport model	
3. 3.7.	The partially premixed combustion model	
3.4.	DEVELOPMENT OF THE NUMERICAL MODEL	
3.4.1	The non-reacting mixture model	27
3.4.2	The reacting mixture model.	
CHAPTER	4 : VALIDATION OF THE DEVELOPED MATHEMATICAL	
		30
	Introduction	30

4.1.1	Validation of the mixing field structure for $\Phi = 7$ and Re = 1000	0030
4.1.2	Validation of the mixing field structure for $\Phi = 2$ and Re = 1000	00
based	on the quantitative analysis	34
СНАРТЕ	R 5 : RESULTS AND DISCUSSION	37
5.1.	Introduction	37
5.2.	The best value of the normalized premixing length (L/D)	37
5.3.	FLAME STRUCTURE	38
5.3.1	Calculating of flame curvature	39
5.3.2	Effect of equivalence ratio on flame structure	41
5.3.3	Finding the lowest value of the equivalence ratio at which the fl	ame be
sustain	able	47
СНАРТЕ	R 6 : CONCLUSIONS AND FUTURE WORK RECOMMENDAT	ΓIONS
6.1.	Introduction	49
6.2.	Conclusions	49
6.3.	RECOMMENDATIONS FOR FUTURE WORK	50
REFERE	NCES	51

List of Tables

Table 2. 1: Regime diagram limits [20]	.12
Table 3. 1 Laminar flame speeds of CH4/air flames, as a function of mixture fraction.	
Z	.26
Table 3. 2 Representative mesh report	.29
Table 4. 1: The main parameters of $\Phi = 7$ and Re = 10000	.30
Table 4. 2: The main parameters of $\Phi = 2$ and Re = 10000	.34
Table 4. 3 values of $R\Delta$ and RZ for Φ =2 and Re = 10000 at L/D=2, L/D=3, L/D=4.5	5,
L/D=6, L/D=10 and theoretical fully premixed.	.35
Table 5. 1 : Values of R Δ , RZ for Φ =2 and Re = 10000 at L/D=6.5, L/D=3 and L/D=	
Table 5. 2 : The main parameters of $\Phi = 1.5$ and Re = 7500	
Table 5. 3: The main parameters of stoichiometric and fuel-rich conditions $L/D = 6.5$	
and Re = 10000	.41
Table 5. 4: The main parameters of fuel-lean conditions $L/D = 6.5$ and $Re = 10000$	
Table 5. 5: The main parameters of $\Phi = 0.65$ at L/D = 6.5 and Re = 10000	.47

List of Figures

Figure 1. 1: World energy consumption,[1],2018	1
Figure 1. 2: Pollutants from the combustion process and their impacts [2]	2
	_
Figure 2. 1: A schematic diagram of the CFCN burner design of (a) Versions I and 2	
and (h) Version 3 [9].	
Figure 2. 2: A schematic diagram of the modified Mansour burner [10]	
Figure 2. 3: A schematic diagram of the modified EL-Mahallawy et.al. burner [11] Figure 2. 4: A modification CFCN burner with a BK7 glass cone [12]	
Figure 2. 5: Cut out in Darmstadt piloted burner [15]	
Figure 2. 6: Stability curve for partially premixed flames [16]	
Figure 2. 7: (a) A diagram of the piloted burner model and (b) Section in the piloted	
burner model [18]	
Figure 2. 8: Stability curve to the FA and FJ configurations [18]	
Figure 2. 9: Stability curves [19] of a) CFCN burners and	
Figure 2. 10: The introduced regimen diagram of partially premixed [20]	
Figure 2. 11: CFCN burner schematic illustration [21]	
Figure 2. 12: The CFCN flames' stability boundaries with and without co-flow at Φ	
2 [21]	
Figure 2. 13: Stability graphs to Concentric Flow burner at $\Phi = 1.5$, $\Phi = 2$, $\Phi = 3$	
$\Phi = 4$. The relationship between Reynolds number and (a) L / D, (b) ΔZ , and (c) R	Δ
are illustrated [21]	
Figure 2. 14 : Scatter plot of R_Z versus R_Δ for $L/D=2$, $L/D=4.5$ and $L/D=8$ at $\Phi=$	= 2
and Reynolds number of 10000 [21]	14
Figure 2. 15 : Scatter plot of R_Z versus R_Δ for $L/D=3.5,L/D=4.5$ and $L/D=5.5$ at	
2 and Reynolds number of 20000 [22].	
Figure 2. 16: Limits of flame stability curves, the relationship between Reynolds	
number and (a) L / D, (b) $\Delta \xi$, and (c) R_{Δ} are illustrated[22]	
Figure 2. 17: CFCN swirl burner assembly [24].	
Figure 2. 18: Stability curve to CFCN swirl burner [24].	16
Element 2 1. Calamatic duration of a manufal flammanian and a manufal	10
Figure 3. 1: Schematic drawing of concentric flow conical nozzle burner	
Figure 3. 2: Laminar Flame Speed of CH4/air flames, as a function of Φ [31]	
Figure 3. 3: Representative mesh of the burner within the domain	
Figure 3. 4: Representative mesh of half section of the model	
Figure 3. 6: Representative mesh of the CFCN burner within the 2D domain	
rigure 3. 6. Representative mesh of the Cr Crv burner within the 2D domain	2)
Figure 4. 1: The CH4 mass fractions contours at different values of L/D for an	
equivalence ratio of 7 and Reynolds number of 10000, where the first row, simulation	on
results, and second row, experimental result [21].	
Figure 4. 2: Simulation and Experimental results of pdfs of Z _{CH4} at L/D =0 for	
equivalence ratio of 7 and Reynolds number of 10000 [21].	31
Figure 4. 3 : Simulation and Experimental results of pdfs of Z_{CH4} at $L/D = 2$ for	
equivalence ratio of 7 and Reynolds number of 10000 [21].	32
Figure 4. 4 : Simulation and Experimental results of pdfs of Z _{CH4} at L/D =5 for	
equivalence ratio of 7 and Reynolds number of 10000 [21]	32

Figure 4. 5 : Simulation and Experimental results of pdfs of Z $_{CH4}$ at L/D =10 for
equivalence ratio of 7 and Reynolds number of 10000 [5]
Figure 4. 6: The probability density functions of the mixture fraction at different values
of L/D for an equivalence ratio of 7 and Reynolds number of 10000, where (a)
Experimental results [21] and (b) Simulation results
Figure 4. 7 Simulation results of the probability density functions of CH ₄ mass fractions
at different values of L/D for an equivalence ratio of 2 and Reynolds number of 10000.
Figure 4. 8 The numerical and experimental results [21] for $\Phi = 2$ and Re = 10000 at
L/D=2, $L/D=3$, $L/D=4.5$, $L/D=6$, $L/D=10$ and theoretical fully premixed within the
mixing field regime diagram [20]
mixing ficia regime diagram [20]
Figure 5. 1: The curves of stability at equivalence ratios of 1.5,2 and 4. The Reynolds
number is shown to (a) the normalized premixing length, L/D, and (b) the normalized
ratio of the mixture fraction range, R_{Δ} [21]
Figure 5. 2: The numerical and experimental results [21] for $\Phi = 2$ and Re = 10000 at
L/D=2, L/D=2.5, L/D=3, L/D=4.5, L/D=6, L/D=6.5, L/D=7, L/D=8 and L/D=10
within the mixing field regime diagram [20].
Figure 5. 3: The simulation boundaries within the 2D domain
Figure 5. 4 OH Contour at the symmetric plane (XZ) for $\Phi = 1.5$, Re = 7500, L/D = 7.
40
Figure 5. 5 : OH Contours line at the symmetric plane (XZ) for $\Phi = 1.5$, Re = 7500,
L/D = 7. 40
Figure 5. 6: PDFs of 2D curvatures K _{xz}
Figure 5. 7 : Velocity contours at symmetric plane for $\Phi = 1,2,3,4$ and $Re = 10000$, for
L/D=6.5
Figure 5. 8 : Temperature contours at symmetric plane for $\Phi = 1,2,3,4$ and Re = 10000,
for L/D=6.543
Figure 5. 9 : OH contours at symmetric plane for $\Phi = 1,2,3,4$ and Re = 10000, for
L/D=6.544
Figure 5. 10 : Velocity contours at symmetric plane for $\Phi = 0.9, 0.8, 0.7$ and Re =
10000, for L/D=6.545
Figure 5. 11: Temperature contours at symmetric plane for $\Phi = 0.9, 0.8, 0.7$ and Re =
10000, for L/D=6.5
Figure 5. 12 : OH contours at symmetric plane for $\Phi = 0.9, 0.8, 0.7$ and Re = 10000, for
L/D=6.5
Figure 5. 13 : Velocity contours at symmetric plane for $\Phi = 0.65$ and Re = 10000, for
L/D=6.5
Figure 5. 14: Temperature contours at symmetric plane for $\Phi = 0.65$ and Re = 10000,
for L/D=6.5
Figure 5. 15 : OH Contours at symmetric plane for $\Phi = 0.65$ and Re = 10000, for
L/D=6.5

Nomenclature

(A/F) Actual air-to-fuel ratio

(A/F)_{st} Stoichiometric air-to-fuel ratio

D The inner diameter of the outer tube of the burner nozzle, mm

L/D The normalized premixing length pdf Probability density function

Reynolds number

 R_{Δ} The normalized ratio of the mixture fraction R_{Z} The normalized ratio of the mean mixture fraction

Z Mixture fraction

 $\begin{array}{lll} Z_L & & Lean \ flammability \ limit \ mixture \ fraction \\ Z_R & & Rich \ flammability \ limit \ mixture \ fraction \\ Z_{min} & & The \ minimum \ value \ of \ the \ mixture \ fraction \\ Z_{max} & & The \ maximum \ value \ of \ mixture \ fraction \\ \end{array}$

 $\begin{array}{ll} Z_{mm} & \qquad & Mean \ of \ Z_{min} \ and \ Z_{max} \\ Z_{LR} & \qquad & Mean \ of \ Z_L \ and \ Z_R \end{array}$

 ΔZ Range of mixture fraction within the mixing field, = $Z_{max} - Z_{min}$

 v_a Airstream velocity, m/sec Fuel stream velocity, m/sec

Φ Equivalence ratio

Acronyms

CFCN Concentric Flow Conical Nozzle
CFD Computational Fluid Dynamics

DO Discrete Ordinates

FGM Flamelet-Generated Manifold LES Large Eddy Simulation PIV Particle image velocimetry

PLIF Particle image velocimetry
Laser-Induced Fluorescence

POD Proper Orthogonal Decomposition

RMS Reynolds Stress Model