

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Faculty of Dentistry

"Histological Assessment of Albino Rats Periodontal ligament in different ages comparing its width with human"

Thesis submitted in partial fulfillment for Master Degree in Oral Biology

By

Esraa Ezzeldin Mohamed

B.D.S (2012)

Faculty of Dentistry, Ain Shams University

Demonstrator in the Egyptian Russian University, Oral Biology

Department

Supervisors

Prof. Dr. Medhat Ahmed El-Zainy

Professor of Oral Biology

Former Vice Dean of Society and Environmental affairs

Faculty of Dentistry, Ain Shams University

Ass. Prof. Marwa Mohamed Abdelhameed

Associate Professor of Oral Biology Faculty of Dentistry, Ain Shams University

Faculty of Dentistry
Ain Shams University
2020

Acknowledgement

First of all, thanks to GOD, the most gracious, the most merciful. The completion of this thesis wouldn't have become possible without the help and support of a number of people to whom I'm greatly indebted. I believe it is my duty to register here my deep gratitude to them.

I wish to thank **Prof. Dr. Medhat Ahmed El-Zainy,** Professor of Oral Biology, Faculty of Dentistry, Ain Shams University, for his considerable and valuable supervision. His deep knowledge and contributions with his constant follow up have made this work fulfilled.

Also, very deep thanks to **Ass. Prof. Marwa Mohamed Abdelhameed**, Associate Professor of Oral Biology, Faculty of Dentistry, Ain Shams University, for her enormous help, support, and guidance. The completion of this thesis wouldn't have become possible without her continuous help and support in the practical and academic part of this thesis.

Dedication

I dedicate this work to my sweet family and beloved husband who gave me all their love and care.

No words can express my gratitude for them, for they have always supported and encouraged me.

Along with all hard working and respected teachers.

Contents

List of figures	.II
List of Tables	IV
Abstract	.1
Introduction	.3
Review of literature	.4
Periodontal ligament structure:	.4
Experimental Animals:1	14
Aim of the study	18
Material and Method	19
I- Sample Collection:	19
II- Sacrifaction:	20
III- Examination by Hematoxylin & Eosin:2	20
IV- Examination by Masson's Trichrome Stain:	21
V- Examination by Periodic Acid Schiff (PAS):2	23
VI- Measurement of periodontal ligament width:2	24
RESULTS	26
I - Histological Results:2	26
II- Measurement of width of periodontal ligament in human by X -	
rays:	14
Discussion5	52
Summary6	50
References6	54

List of figures

Figure 1: periodontal ligament of the first group26
Figure 2: Higher magnification of figure (1)26
Figure 3: first group showing zuckerkandle and Hirschfield canals27
Figure 4: first group showing interstitial tissues27
Figure 5: periodontal ligament of the second group29
Figure 6: Higher magnification of figure (5)
Figure 7: periodontium of the second group showing oblique fibers30
Figure 8: Higher magnification of figure (7)30
Figure 9: high magnification of the oblique fibers of the second group31
Figure 10: periodontium of the second group showing oblique and apical fibers
Figure 11: higher magnification of figure (10)32
Figure 12: periodontal ligament of the third group34
Figure 13: high magnification of the third group periodontium34
Figure 14: periodontal ligament of the third group showing oblique fibers
Figure 15: periodontium of the third group showing apical and oblique fibers
Figure 16: periodontal ligament of the third group showing oblique fibers
Figure 17: high magnification of the third group periodontium
Figure 18: periodontium of the first group showing apical fibers

Figure 19: periodontium of the first group showing oblique fibers
Figure 20: periodontium of the second group showing oblique fibers38
Figure 21: periodontium of the second group showing apical fibers38
Figure 22: periodontium of the third group showing oblique fibers39
Figure 23: periodontium of the third group showing apical fibers39
Figure 24: periodontium of the first group showing oblique fibers (PAS)
Figure 25: periodontium of the first group showing apical fibers (PAS)40
Figure 26: periodontium of the second group showing oblique fibers (PAS)
Figure 27: periodontium of the second group showing apical fibers (PAS)
Figure 28: periodontium of the third group showing oblique fibers (PAS)
Figure 29: periodontium of the third group showing apical fibers (PAS)42
Figure 30: periodontal ligament at molar region of young age group43
Figure 31: periodontal ligament at molar region of young age group43
Figure 32: periodontal ligament at molar region of middle age group44
Figure 33: periodontal ligament at molar region of middle age group44
Figure 34: periodontal ligament at molar region of the old age group45
Figure 35: periodontal ligament at molar region of the old age group \dots 45
Figure 36: periodontal ligament width levels among different rat groups
Figure 37: periodontal ligament width levels among different human groups

List of Tables

Table 1: Comparison between rats age groups regarding middle and apical
regions47
Table 2: Comparison between human age groups regarding middle and apica
regions

Abstract

Introduction: The periodontal ligament is a complicated connection tissue system connecting the alveolar bone to root surface. Like any other tissue periodontal ligament undergoes changes by age either in its fibers, ground substance, cells or blood vessels. Aim of the work: This work aimed to assess the histological changes of periodontal ligament in different ages of albino rats and correlating these changes with corresponding human ages. **Material and methods:** 30 rats were divided evenly into 3 groups (10 rats each). Group 1: 6 months old group, Group 2: 12 months old group and Group 3: 24 months old group. Rats were terminated by I.V. overdose of sodium thiopental, the mandibles of the rats were excised to allow for laboratory processing for H&E stain, Masson's trichrome stain and Periodic acid -Schiff (PAS) with subsequent examination, 30 periapical films from three categories of persons aged between 12-18 years, 30-36 years old and 68-72 years old. **Results:** Histologically, group 3 showed significant reduction in immature fibers, cells and ground substance. Statistically, regarding morphometric analysis of periodontal ligament width in periapical human films, there were no significant difference in width between oblique and apical regions in both rats and human. Both experimental rats and human showed increased Periodontal ligament width by age **Conclusion**:

There is gradual reduction in fibers and cellularity of periodontal ligament by aging. However, periodontal ligament width mostly increased by age in rats and in examined periapical films in human.

Keywords: Aging, periodontal ligament, PDL width, rat age.

Introduction

The periodontal membrane is a complicated connection tissue system, containing blood vessels, nerves connecting the alveolar bone to root of the tooth. The connecting tissues contain organized and ordered collagen fiber bundles, which penetrate the adjacent tissues (cementum and alveolar bone) and contribute to the fixation of teeth (Valponi et al., 2015).

The constituents of Periodontal ligament (PDL) are cells, fibers, ground substance which contains blood vessels, nerves and lymphatics and epithelial rests of Malassez. Cells of PDL are fibroblasts, fibrocytes, cementoblasts, osteoblasts and few immune cells (Washio et al., 2010 and Valponi et al., 2015).

Like any other tissue periodontal ligament undergoes changes by age either in its fibers, ground substance, cells or blood vessels (**Anthony,2010**) Which worthy need to spot light on.

Review of literature

Periodontal ligament structure:

A) An Overview:

The periodontal ligament is a fibrous connective tissue that is highly innervated and vascularized (**Katchburian and Arana**, **2004**). Periodontal ligament connects the root of teeth with the alveolar bone. The periodontal ligament has two main functions: 1-transmission and absorption of mechanical stresses, it is responsible for shock absorption and proprioceptive sensorial perception aiming to comfort dental arch during chewing. 2-provide vascular supply and nutrients to cementum, alveolar bone and periodontal ligament itself (**Nanci and Bosshardt,2006**).

The periodontal ligament is crossed by thick bundles of fibers type I collagen fibers which are the major component of the extracellular matrix in the PDL and play an important role in teeth anchoring on alveolar bone and cementum. There are some oxytalan fibers embedded within the periodontal ligament and usually they are associated with blood vessels (**Omar et al, 2017**).

The orientation of fiber bundles depends on their location into gingival and principal, the principal fiber groups are alveolar crest, horizontal, oblique and interradicular. The gingival groups are the ligament fibers in the gingival lamina propria and they are: transseptal, dentogingival, alveogingival and circumferential.