

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

STUDIES ON GENE REGULATION OF SOME GENES THAT RELATED TO BT. TOXINS RESISTANCE IN THE COTTON WORM,

Spodoptera littoralis

By

HAGER MOHSEN HASSAN ALI KHALIL

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2013

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Genetics)

Department of Genetics
Faculty of Agriculture
Cairo University
EGYPT

2021

Format Reviewer

Vice Dean of Graduate Studies

SUPERVISION SHEET

STUDIES ON GENE REGULATION OF SOME GENES THAT RELATED TO *BT*. TOXINS RESISTANCE IN THE COTTON WORM,

Spodoptera littoralis

M.Sc. Thesis In Agricultural Sci. (Genetics)

By

HAGER MOHSEN HASSAN ALI KHALIL

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2013

SUPERVISION COMMITTEE

Dr. NAGWA IBRAHIM ABDELFATTAH ELARABI

Associated Professor of Genetics, Fac. Agric., Cairo University

Dr. DALIA SAYED Ahmed HASANEEN

Lectural of Genetics, Fac. Agric., Cairo University

Dr. SAAD MOHAMED MOUSSA

Head Researcher of Insect Biotechnology, Plant Protection Research Institute, Agricultural Research Center

Name of Candidate: Hager Mohsen Hassan Ali Khalil Degree: M.Sc. Title of Thesis: Studies on Gene Regulation of Some Genes that Related to

Bt. Toxins Resistance in the Cotton Worm, Spodoptera littoralis.

Supervisors: Dr. Nagwa Ibrahim Abdelfattah Elarabi

Dr. Dalia Sayed Ahmed Hasaneen

Dr. Saad Mohamed Moussa

Department: Genetics **Branch:**

Approval: 27/3/2021

ABSTRACT

A better understanding of the processing of *Bacillus thuringiensis* (Bt) Cry1C toxin in the midgut of *Spodoptera littoralis* larvae is very important to characterize the main regulatory elements of Bt tolerance. The current study aimed to evaluate the mRNA level of trypsin (Try), aminopeptidase N (APN), alkaline phosphatase (ALP), cadherin (Cad), and cytochrome P450 (CYP) in both susceptible and Cry1C- tolerant strains of S. littoralis. Total RNA was extracted from susceptible and tolerant strains to construct cDNA. Quantitative real-time PCR (qPCR) showed a significant upregulation of CYP gene in tolerant strain. In contrast, the levels of expression of Try, ALP and Cad were significantly downregulated in tolerant strain. APN relative mRNA expression did not show significant differences between susceptible and tolerant strains. Histologically, the midgut of late third-instar larvae of tolerant population S. littoralis showed vacuolization of the epithelium and disruption of both the peritrophic membrane and the striated boarder compared to the susceptible strain. Our data indicate the important roles of CYP, Try, ALP and Cad in the resistance development and toxicity to Bt Cry1C. The obtained results are useful for further illustrating of Bt Cry1C processing and S. littoralis tolerance.

Key words: *Spodoptera littoralis, Bacillus thuringiensis, Bt* Cry1C toxin, Tolerance, qPCR

DEDICATION

I dedicate this work to whom my heartfelt thanks: my parents and brother for all the support they lovely offered during my graduate studies.

ACKNOWLEDGEMENT

First of all, I would like to thank **ALLAH** almighty, the most merciful and compassionate, for his support, help and generosity.

My deepest thanks for **Dr. Haggag Salah Zein**, Professor of Genetics, for his appreciated, continued guidance and help in practical this thesis.

I wish to express my sincere thanks, deepest gratitude and appreciation to **Dr. Nagwa Ibrahim Abdelfattah Elarabi**, Associated Professor of Genetics, Faculty of Agriculture, Cairo University, for supervision, continued assistance, and guidance through the course of my study and for revision of the manuscript of this thesis.

Sincere thanks and deepest gratitude are also due to **Dr.**Saad Moussa, Head Researcher of Insect Biotechnology, Plant
Protection Research Institute, Agricultural Research Center, for
sharing in supervision, guiding me and facilitating difficulties.

Special thanks and sincere appreciation to **Dr. Dalia Sayed Ahmed Hasaneen**, lectural of Genetics, Faculty of Agriculture,
Cairo University, for supervision, continued assistance, and
guidance through the course of my study and for revision of the
manuscript of this thesis.

Grateful appreciation is also extended to all staff members of Genetics department, Faculty of Agriculture, Cairo University and all staff members of Insect Biotechnology and Molecular Biology unit, Plant Protection Research Institute, Agricultural Research Center.

Special deep appreciation is given to my father, my mother, my brother and my friends for their support and encouragement.

LIST OF ABBREVIATIONS

ABC : ATP-Binding Cassette

AGERI : Agricultural Genetic Engineering Research Institute

ALP : Alkaline phosphatase
APN : Aminopeptidases N
APS : Ammonium persulfate

ARC : Agricultural Research Center
BBMVs : Brush Border Membrane Vesicles
BLAST : Basic Local Alignment Search Tool

bp : Basepair

BSA : Bovine Serum Albumin
Bt : Bacillus thuringiensis

Bti : B. thuringiensis subsp. israelensis

Cad : Cadherin

cAMP : Cyclic Adenosine MonoPhosphate

cDNA : Complementary DNA

Cry : Crystal

Cry1AMod: Cry Modified toxinsCt: Threshold CycleCTP: ChymotrypsinCYP: Cytochrome P450

Cyt : Cytolytic

DEPC: Diethyl Pyrocarbonate

2D-DIGE: Two-Dimensional Differential In-Gel Electrophoresis

DNA : Deoxyribonucleic acid **dsRNA** : Double-stranded RNA

DTT : Dithiothreitol

EDTA : Ethylenediaminetetraacetic acid

EtBr : Ethidium Bromide FL : Fiducial Limits

GST : Glutathione S-Transferases ICPs : Insecticidal Crystal Proteins

Kb : Kilo basepairKDa : Kilodalton

LC₅₀ : 50% Lethal Concentration

mALP : Membrane-bound Alkaline phosphatase