

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Study of Some Possible Textures of Neutrino Mass Matrix

A Thesis submitted in partial fulfillment of the requirement for the degree of

Master of Science in Physics

Ву

Ahmed Ismael Hessen Ismael

Physics Department
Faculty of Science, Ain Shams University, Egypt

Supervisors

1- Prof. Dr. Elsayed Ibrahim Lashin

Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt.

2- Ass. Prof. Dr. Esraa Ali Elkhateeb

Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt.

Cairo, Egypt

2021

Approval Sheet

Title of the Master Thesis

Study of Some Possible Textures of Neutrino Mass Matrix

Name of Candidate

Ahmed Ismael Hessen Ismael,
Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt

Submitted to the

Faculty of Science, Ain Shams University, Cairo, Egypt

Supervision Committee

1- Prof. Dr. Elsayed Ibrahim Lashin

Physics Department, Faculty of Science, Ain Shams University,

Cairo, Egypt.

2- Ass. Prof. Dr. Esraa Ali Elkhateeb

Physics Department, Faculty of Science, Ain Shams University,

Cairo, Egypt.

Study of Some Possible Textures of Neutrino Mass Matrix

By

Ahmed Ismael Hessen Ismael

Supervisors:	Signature
Prof. Dr. Elsayed Ibrahim Lashin	
Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt.	
Ass. Prof. Dr. Esraa Ali Elkhateeb	
Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt.	
Examiners:	
Prof. Dr. Elsayed Ibrahim Lashin	
Physics Department, Faculty of Sceince, Ain Shams Universty, Egypt.	
Prof. Dr. Shaaban Saeed Khalil	
Center of Fundamental Physics , Zewail City of Science and Technology.	
Dr. Yasser Mohamed Assran Center of Theoretical Physics, The British University	
in Egypt.	

Name: Ahmed Ismael Hessen Ismael

Degree: M.Sc.

Department: Physics

Faculty: Science

University: Ain Shams University

Graduation Date: 2015

Registration Date: 11/12/2017

Grant Date:

To my beloved son..

Abstract

Neutrinos are elementary particles that have spin $\frac{1}{2}$ integer, so they are called fermions. They have small masses compared to the other leptons (e, μ, τ) . Even though neutrinos are one of the most abundant particles in the universe, they are incredibly difficult to detect. They have neither an electric charge nor a color charge. Thus, they interact with matter only via weak and gravitational interactions. Neutrinos are created by different sources such as in beta decay of the nucleus, in nuclear reactions that occur in the core of the stars, in nuclear reactions inside the core of the reactors, during the explosion of the stars, etc. The first one who postulated the existence of neutrinos was Pauli in 1930 to preserve energy, momentum, and angular momentum conservation in beta decay. In 1956, neutrinos were first detected by Frederick Renines, F.B.Harrison, H.W.Kruse, and A.D.McGuire [1]. There are three different types of neutrinos which are called flavors ν_e , ν_μ and ν_τ produced along with e, μ and τ in the weak interactions. For many years physicists considered a neutrino to be a massless particle, but after neutrino oscillations observations [2, 3, 4, 5, 6], we have to consider neutrinos as massive particles, and their mass eigenstates are not degenerate. The interactions between neutrinos and other elementary particles are described within the standard model of the elementary particle physics, which is $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ gauge theory. However, the matter content of the standard model does not contain right-handed neutrinos. Therefore, the neutrinos are massless particles in that model, but this assumption contradicts the neutrino oscillation observations. To overcome this problem, we have to go beyond the standard model to explain naturally how neutrinos acquire small masses compared to the other leptons. Therefore, the neutrino oscillations were the first firm sign of physics beyond the standard model.

The neutrino oscillation experiments give clear and strong evidence that the neutrinos are massive and lepton flavors are mixed. If we assume that neutrino is a Majorana type and also we are working on the basis, where the charged lepton mass matrix is diagonal, all mixing comes solely from the neutrino sector. The neutrino mass matrix is in general a complex symmetric matrix that has 12 real parameters. It can be parametrized by three mixing angles, three real masses, and six complex phases. One can absorb three complex phases out of the six one by rephasing both left and right-handed charged leptons. The experiments put constraints on the mixing angles $(\theta_{12}, \theta_{23}, \theta_{13})$, three neutrino masses (m_1, m_2, m_3) , and the Dirac phase δ . However, there are no experimental constraints on the Majorana phases ρ and σ till now.

There exist many phenomenological models have been presented to reduce the number of free parameters such as zero textures [7, 8, 9, 10], zero minors [11, 12], vanishing traces [13, 14], equality textures [15, 16], hybrid textures [17, 18, 19], $\mu - \tau$ symmetry textures [20, 21], etc.

The plan of the thesis is as follows: In chapter 1, we present the standard model of elementary particles as a gauge theory and concentrate on the $SU(2)_L \otimes U(1)_Y$ gauge sector. We also discuss how the elementary particles acquire their mass without spoiling the gauge symmetry via the Higgs mechanism. In the second chapter, we explain the theory of the neutrino oscillations together with type-I and type-II seesaw mechanisms to show how observed neutrinos acquire small masses. In the last chapter, we introduce a phenomenological and analytical study of the one vanishing subtrace model. We find that all six possible textures can accommodate the experimental data. We also find that four singular textures are viable in the case of inverted hierarchy. Finally, we introduce different symmetry realization methods to enforce a vanishing subtrace condition in the neutrino mass matrix. The realization methods used in our study are called direct and indirect. In the direct method, we use $Z_2 \times Z_6$, $Z_2 \times Z_2'$, and $Z_2 \times Z_4 \times U(1)^3$ symmetries within type-I, type-II, and type-I+II respectively in order to realize four viable textures. In the indirect method, we obtain the desired symmetry assignments for the matter fields that impose the texture condition from the counterparts in the one zero texture model. We use $Z_8 \times Z_2$ and Z_5 symmetries within type-I and type-II seesaw scenarios. However, $Z_{12} \times Z_2$ is used to realize some viable singular textures.

Acknowledgements

I would like to thank my supervisor Prof. Elsayed Lashin for his support, patience and guidance throughout my work as a graduate student. He always provided me with invaluable advice and insights that helped me improve this research and be a better researcher. I would like also to thank our collaborator Prof. Nidal Chamoun for his diligence and professionalism.

I also would like to thank Dr. Esraa Alkhateeb fo her support and instruction. I appreciate advice and support I received from Dr. Mohamed Abbas both on the professional and personal levels. Also I would like to thank Prof. Adel Awad and Prof. Shaaban Khalil for the useful discussions.

Finally, I would like to thank my family. This work would have never been completed without their patience, assistance and emotional support.

Contents

Li	List of Tables		
Li	st of	Figures	6
1	Sta	ndard model of elementary particle physics	9
	1.1	Introduction	Ö
	1.2	Leptons and currents in $SU(2)_L \otimes U(1)_Y$ model	10
	1.3	The gauge invariant lagrangian in the electroweak theory	12
	1.4	The Higgs mechanism	13
	1.5	Extension to more than one lepton family	23
	1.6	Extension to quarks	24
	1.7	Problems in the standard model	31
2	Neı	atrino masses and neutrino oscillation	33
	2.1	Introduction	33
		2.1.1 Solar neutrinos	35
		2.1.2 The super–Kamiokande experiment	36
		2.1.3 The SNO experiment	37
	2.2	Neutrino oscillations of the two flavors	38
	2.3	Neutrino oscillation of the three flavors	42
	2.4	CP and T symmetries violation in the neutrino oscillations	45
	2.5	Mechanisms of the neutrino mass	46
	2.6	Seesaw mechanism	47
	2.7	The lepton mixing matrix	49
3	Tex	ture of single vanishing subtrace in the neutrino mass matrix	5 3
	3.1	Introduction	53
	3.2	Texture of single vanishing subtrace	54
	3.3	Numerical analysis for nonsingular textures	55
		3.3.1 Texture \mathbf{C}_{11} : Vanishing of $M_{\nu 22} + M_{\nu 33}$	58
		3.3.2 Texture C_{12} : Vanishing of $M_{0.21} + M_{0.22}$	61

Bi	Bibliography		
4	Sun	nmary and Conclusion 1	13
	3.9	Indirect realization of type II seesaw with Z_5 symmetry	100
		3.8.1 Indirect realization for the singular textures with $Z_{12} \times Z_2$ symmetry	
	3.8	Indirect realization of type-I seesaw with $Z_8 \times Z_2$ symmetry	90
	3.7	Direct realization by using Type I+II seesaw with $Z_2 \times Z_4 \times U(1)^3$ symmetry	86
	3.6	Direct realization by using type-II seesaw with $Z_2 \times Z_2'$ -symmetry	82
	3.5	Direct realization by using type-I seesaw with $Z_2 \times Z_6$ -symmetry	78
	3.4	Numerical analysis for singular textures	71
		3.3.6 Texture C_{33} : Vanishing of $M_{\nu 11} + M_{\nu 22}$	69
		3.3.5 Texture C_{23} : Vanishing of $M_{\nu 11} + M_{\nu 23}$	67
		3.3.4 Texture \mathbf{C}_{22} : Vanishing of $M_{\nu 11} + M_{\nu 33}$	65
		3.3.3 Texture C_{13} : Vanishing of $M_{\nu 21} + M_{\nu 23}$	63

List of Tables

1.1	Lepton content in the electroweak theory	12
1.2	quark content in electroweak theory	25
2.1	The experimental bounds for the oscillation parameters at 1-2-3 σ -levels, taken from the global	
	fit to neutrino oscillation data [22]. Normal and Inverted Hierarchies are respectively denoted	
	by NH and IH	52
3.1	The various prediction for the patterns of one vanishing subtrace textures des-	
	ignated by $C_{11}, C_{12}, C_{13}, C_{22}, C_{23}$ and C_{33}	57
3.2	The various predictions for the patterns of one vanishing subtrace textures and	
	vanishing m_3 designated by C_{12}, C_{13}, C_{22} and C_{33}	73
3.3	The $Z_2 \times Z_6$ symmetry realization for the \mathbf{C}_{33} pattern within type-I seesaw	
	scenario. Φ are five Higgs doublets, D_L refers to the flavor three left handed	
	lepton doublets, while the three right-handed charged lepton singlets are denoted	
	by l, ω denotes $e^{i\pi/3}$, T and S are the symmetry transformation matrices for Z_6	
	and Z_2 respectively	78
3.4	The $Z_2 \times Z_6$ symmetry realization for the C_{11} pattern within type-I seesaw scenario.	
	Φ are five Higgs doublets, D_L refers to the flavor three left handed lepton doublets,	
	while the three right-handed charged lepton singlets are denoted by l, ω denotes $e^{i\pi/3}$,	
	T and S are the symmetry transformation matrices for Z_6 and Z_2 respectively	80
3.5	The $Z_2 \times Z_6$ symmetry realization for the C_{22} pattern within type-I seesaw scenario.	
	Φ are five Higgs doublets, D_L refers to the flavor three left handed lepton doublets,	
	while the three right-handed charged lepton singlets are denoted by l, ω denotes $e^{i\pi/3}$,	
	T and S are the symmetry transformation matrices for Z_6 and Z_2 respectively	81
3.6	The $Z_2 \times Z_6$ symmetry realization for the C_{13} pattern within type-I seesaw scenario.	
	Φ are five Higgs doublets, D_L refers to the flavor three left handed lepton doublets,	
	while the three right-handed charged lepton singlets are denoted by l, ω denotes $e^{i\pi/3}$,	
	T and S are the symmetry transformation matrices for Z_6 and Z_2 respectively	81