

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Physics Department Faculty of Science Ain Shams University

Investigation of Some Minerals as Radiation Dosimeters

A theises submitted by

Shrouk Farouk Abd El Hamid

For the degree of doctor of philosophy in physics

Physics Department

Faculty of Science, Ain Shams University

Egypt

Supervisors

Prof. Dr. Nabil Ali El-Farmawy

Professor of Nuclear and radiation Physics Physics Department, Ain Shams University

Dr. Hassan Fathy El Nashar Prof. Ass. of theortical Physics

Prof. Ass. of theortical Physics Physics Department, Ain Shams University

Dr. Ahmed Gad Abd El wahed

Teacher of geology Geology Department, Ain Shams University

Dr.Huda Abd El star El Azab

Teacher of physics Nuclear and Radiological RegulatoryAuthority

Physics Department Faculty of Science Ain Shams University

Name: Shrouk Farouk Abd El-Hamid Ebrahim

Title: Investigation of Some Minerals as Radiation Dosimeters

Degree: Doctor of philosophy in Physics

Thesis Supervisors:

Prof. Dr. Nabil Ali El-Farmawy

Professor of Nuclear and radiation Physics Physics Department, Faculty of Science Ain Shams University

Dr. Hassan Fathy El Nashar

Prof. Ass. of Theortical Physics Physics Department, Faculty of Science Ain Shams University

Dr. Ahmed Gad Abd El wahed

Teacher of geology Geology Department, Faculty of Science Ain Shams University

Dr. Huda Abd El star El Azab

Teacher of physics Nuclear and Radiological Regulatory Authority

Physics Department Faculty of Science Ain Shams University

Name: Shrouk Farouk Abd El-Hamid Ebrahim

Title: Investigation of Some Minerals as Radiation

Dosimeters

Degree: Doctor of philosophy in Physics

Thesis Supervisors:

Prof. Dr. Nabil Ali El-Farmawy

Professor of Nuclear and radiation Physics Physics Department, Faculty of Science Ain Shams University

Dr. Hassan Fathy El Nashar

Prof. Ass. of Theortical Physics Physics Department, Faculty of Science Ain Shams University

Dr. Ahmed Gad Abd El wahed

Teacher of geology Geology Department, Faculty of Science Ain Shams University

Dr. Huda Abd El star El Azab

Teacher of physics Nuclear and Radiological Regulatory Authority

Examining Committee

1.

2.

3.

Approval Stamp

Date of Approval

/ 2021

/ / 2021

Approval of Faculty Council

Approval of University Council

/ / 2021

/ / 2021

ACKNOWLEDGEMENTS

First, I thank **Allah**, the most **Beneficent**, the most **Merciful**, Who gave me the ability to do this work and I am asking **His** support for further success in my scientific work.

I would like to thank my dear esteemed supervisor *Prof.Dr. Nabil Ali EL-Farmawy* for his invaluable supervision, support and tutelage during the work of my PhD. Also his treasured support which was really influential in achieving my experiment and success of my results.

I also thank *Dr. Hassan Fathy El Nashar*, *Dr. Ahmed Gad Abd El-wahed* and *Dr. Huda Abd El star El Azab* for their mentorship.

Great thanks to my friends, lab mates, colleagues and research team for a cherished time spent together in the lab, and in social settings. Deeply thanks for my father *Farouk* and my *mother* Rahmaha Allah for their helpful and supporting me always.

Finally, to my caring, loving, and supportive husband, *Mohamed*: my deepest gratitude. Your encouragement when the times got rough are much appreciated and duly noted. It was a great comfort and relief to know that you were willing to provide management of our household activities while I completed my work.

Lovely thanks to my sons Yassin & Hassan.

Contents	
Acknowledgements	v
List of Figures.	vii
List of Tables.	X
Summary	1
CHAPTER 1: THEORETICAL ASPECTS	
1.1. Luminescence.	3
1.1.1. Types of luminescence	4
1.1.1.1. Fluorescence	4
1.1.1.2. Phosphorescence	5
1.1.1.3. Thermoluminescence	6
1.1.1.4. Cathodoluminescence	8
1.1.1.5. Radioluminescence	8
1.1.1.6. Electroluminescent	9
1.1.1.7. Chemiluminescence	10
1.1.1.8. Bioluminescence	11
	11
1.2. Mathematical treatment of TL	
	11
1.2.2. First-order kinetics	15
	16
1.2.4. General-order kinetics	17
1.3. TL Glow Curve Analysis.	18
1.3.1. Empirical methods	18
1.3.2. Initial rise (IR) method.	19
1.3.3. Various heating rate method	20
1.3.4. Isothermal decay method.	21
1.3.5. Methods based on the shape of glow peaks	23
1.3.6. Curve Fitting Method	26
1.4. General characteristics of TLD materials	27
1.4.1. Linearity	27
1.4.2. Fading	28
1.4.3. Annealing procedures	29
1.4.4. Stability and reproducibility	29
1.4.5. Sensitivity	30
1.4.6. Sensitisation.	30
1.5. Types of TL materials	30
1.5.1. Artificial TL materials	30
1.5.2. Natural TL materials	31
1.6. Quartz	32
1.6.1. Physical Properties.	33
1.6.2. Structure	35
1.7. Applications of TLDs in Radiation Dosimetry	37

1.7.1. Personal Dosimetry	37
1.7.2. Environmental Dosimetry	38
1.7.3. Clinical Dosimetry	38
1.7.4. High Dose	39
1.7.5. Retrospective Dosimetry	39
1.8. Advantages of TLD	40
CHAPTER 2: PREVIOUS WORK	
2.1. Thermoluminescence (TL) properties from natural geological materials	42
2.2. Thermoluminescence (TL) properties from quartz	46
CHAPTER 3: MATERIAL AND METHODS	
3.1. Sample preparation	65
3.2. Annealing process.	68
3.3. Sample characterization.	69
3.4. Sample irradiation (γ –rays source)	69
3.5. TLD measurements.	70
CHAPTER 4: RESULTS AND DISCUSSION	İ
4.1. Investigation of thermoluminescence glow curves in quartz extracted from Central Eastern Desert (CED), Egypt.	71
4.1.1. X-ray results	71
4.1.2. Elementary analyses	72
4.1.3. TL-measurements	73
4.1.3.1. TL glow curve structure	73
4.1.3.2. Kinetic Analysis	75
4.1.3.3. Dose Response Linearity	76
4.1.3.4. Sensitivity	79
4.1.3.5. Minimum Detectable Dose	80
4.1.3.6. Fading	81
4.2. Thermoluminescence response and its kinetic analysis of a natural milky quartz associated with tin-tungsten-fluorite	0.2
mineralization	82 82
4.2.2. Elementary Analysis	83
4.2.1. Photoluminescence (PL) Spectroscopy	84
4.2.2. Dosimetric properties	85
4.2.2.1. Glow curve and dose response curve	85
4.2.2.2. Kinetic Analysis	88
4.2.2.3. Tm-Tstop method.	93
4.2.2.4. Linearity	95
4.2.2.5. Minimum Detectable Dose (MMD)	96
4.2.2.6. Sensitivity	97
4.2.2.7. Reproducibility	98

4.2.2.8. Fading	99
Conclusions	101
References	103
Appendix	117
Arabic Summary	

List of Figures

Figure No.	Title	Page No.
Figure (1.1)	Energy level diagram showing the fluorescence	
	process. The up and down arrows correspond to	5
	absorption and emission of energy respectively.	
Figure (1.2)	Energy level diagram showing the phosphorescence	
	process. The electron may be trapped at level m	
	before decaying to the ground state g. The up and	6
	down arrows correspond to absorption and emission	
	of energy respectively.	
Figure (1.3)	Basic energy band model used to explain	7
	luminescence phenomena.	/
Figure (1.4)	Energy band model showing electronic transitions in	
	a TL material. (a) generation of electrons and holes;	
	(b) electron and hole trapping; (c) electron release	
	due to thermal stimulation; (d) recombination. Solid	12
	circles represent electrons and open circles are holes.	12
	Level T is an electron trap, level R is a recombination	
	centre, Ef is the Fermi level, Eg is the energy band	
	gap. Diagram reproduced from s.	
Figure (1.5)	A TL glow curve approximated to two rights angled	
	triangles. The half width is represented by ω , the first	24
	half of ω is τ and second half is δ .	
Figure (1.6)	Example of linearity.	28
Figure (1.7)	Different colors of quartz.	33
Figure (1.8)	Milky quartz (colorless).	34

Figure (1.9)	The crystal structure of quartz (c-axis projection).	37
Figure (3.1)	Satellite image showing the investigated samples site.	66
Figure (3.2)	The quartz sample before and after cutting into chips.	67
Figure (3.3)	The eight quartz sample after cutting into chips	67
Figure (3.4)	Electrical furnace (type 6-525, Ney Co., USA).	68
Figure (3.5)	4500 TLD reader controlled with PC (up).	70
Figure (4.1)	XRD patterns of the Egyptian milky quartz samples.	71
Figure (4.2)	Hexagonal Quartz low phase (ICDD card no. 03-065-	
	0466) of the Egyptian milky quartz samples with	71
	lattice parameters of $a = 4.91A^{\circ}$ and $c = 5.4 A^{\circ}$.	
Figure (4.3)	The deconvolution of the TL glow curve of the	
	Egyptian milky quartz samples after irradiation of	
	500Gy. The black TL glow curve was fitted to the	74
	red one and six energy trapes were deconvoluted.	
Figure (4.4)	The change in the TL glow curve of the Egyptian	
	milky quartz samples after irradiation (a) from 0.250	77
	up to 20 Gy, and (b) from 50 Gy up to 2 kGy.	
Figure (4.5)	The dose response curve of the Egyptian milky	
	quartz samples after exposure to gamma radiation in	
	the dose range from 0.250 mGy up to 2 kGy.	
	Linearity was displayed in the range from 0.250 up to	78
	20 Gy and supralinearity from 20 Gy up to 200 Gy.	
	More than 200, the sensitivity of the samples were	
	increased exponentially.	
Figure (4.6)	The sensitivity of the Egyptian milky quartz samples	00
	(a) in the linear range (250 mGy-20 Gy), and (b) in	80
-		

	the range of 20-200 Gy (supralinear range) and more	
	than 200 Gy.	
	The change of the TL intensity glow curve of the	
Figure (4.7)	Egyptian milky quartz samples with different storage	
	times. The storage time was calculated between the	82
	end of irradiation (500 Gy) and start of TL	
	measurement.	
Figure (4.8)	XRD patterns of the Egyptian milky quartz samples.	83
Figure (4.9)	PL emission spectrum of the investigated Egyptian	85
	quartz samples showing peal at 357 nm.	63
Figure (4.10)	The response glow curves at different doses from	86
	0.25 Gy to 2 kGy.	80
Figure (4.11)	The glow curves of six overlapping	
	thermoluminescence peaks from four different doses	87
	(10, 50, 500, and 2000 Gy) in the temperature range	
	between 323 °K temperatures to 673 °K.	
Figure (4.12)	Tm- Tstop results of the investigated Egyptian quartz	95
	samples.)3
Figure (4.13)	The TL response exhibited a linear behavior in the	
	range from 5.0 Gy to 2 kGy in terms of a component	96
	resolved analysis.	
Figure (4.14)	The reproducibility of the radiation response of the	
	investigated Egyptian quartz samples in terms of a	99
	component resolved analysis.	
Figure (4.15)	Relation of TL intensity of the Egyptian milky quartz	100
	with stored time up to two months after 500 Gy	
	gamma-ray dose irradiation for all peaks.	

List of tables

Table No.	Title	Page No.
Table (1.1)	General and Physical Properties of Quartz	35
Table (1.2)	Crystallographic Information.	36
Table (4.1)	Shows the elemental analysis of the samples.	73
Table (4.2)	Trapping parameters of the investigated samples by new software.	76
Table (4.3)	The elemental analysis of the investigated quartz samples.	84
Table (4.4)	The calculated trapping parameters of the investigated quartz samples using CGCD and Peak shape method for doses from 5 Gy up to 2 kGy.	89
Table (4.5)	The activation trap energies for different heating rates	93