

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

# بسم الله الرحمن الرحيم





MONA MAGHRABY



شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



MONA MAGHRABY



شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

# جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



MONA MAGHRABY





# Magnetothermal Properties and Magnetocaloric Effect in some $RFe_2$ Compounds.

A Thesis Submitted in partial fulfillment of the requirement for the degree of master of science (M.Sc.) in Physics

#### By

#### Rana Hesham Gamal El-Din Afify

B.Sc. in Physics, Faculty of Science, Ain Shams University, 2015
To Physics Department, Faculty of Science, Ain Shams
University

#### **Supervisors**

#### Prof. Dr. Ahmed Abdel Ghani Awad

Professor of Materials Science Physics Department, Faculty of Science, Ain Shams University

#### Ass. Prof. Dr. Mona Abdel Aziz Hussein

Associated Professor of theoretical Physics Physics Department, Faculty of Science, Ain Shams University

#### Prof. Dr. Mohamed Sherif Yehia

Professor of theoretical physics
Physics Department, Faculty of Science-Helwan University

Physics Department Faculty of Science Ain Shams University (2021)

### Ain Shams University Faculty of Science Physics Department



#### **APPROVAL SHEET**

# Magnetothermal properties and magnetocaloric effect in some RFe<sub>2</sub> compounds

A Thesis Submitted in partial fulfillment of the requirement for the degree of master of science (M.Sc.) in Physics

#### By Rana Hesham Gamal El-Din Afify

#### **Supervisors**

| Prof. Dr. Ahmed Abdel Ghani Awad                 | ()           |
|--------------------------------------------------|--------------|
| Professor of Materials Science                   |              |
| Physics Department, Faculty of Science, Ain Sham | s University |
| Ass. Prof. Dr. Mona Abdel Aziz Hussein           | ()           |
| Associated Professor of theoretical Physics      |              |
| Physics Department, Faculty of Science, Ain Sham | s University |
| Prof. Dr. Mohamed Sherif Yehia                   | ()           |
| Professor of theoretical physics                 |              |
| Physics Department, Faculty of Science-Helwan Un | niversity    |
| Head of Physics Department                       | nt           |
| Prof. Dr. Nabil Ali Elfarai                      | mawy         |
| ()                                               |              |

## Ain Shams University Faculty of Science Physics Department



Name: Rana Hesham Gamal El-Din Afify

Degree: M. Sc.

**Department:** Physics

Faculty: Science

University: Ain Shams University

**Registration Date:** / /

Grant year: 2021

# © 2021 Rana Hesham Gamal El-Din ALL RIGHTS RESERVED

#### Acknowledgements

Above all, praise to **ALLAH**, the lord of the world, by whose grace this work has been completed and never leaving me during this stage.

I would like to thank *Prof. Dr. Nabil Ali Elfaramawy*, chairman of the physics department, for his interest, encouragement and support.

My deep thanks to my supervisors for their continuous support and advice.

I appreciate the guidance, the efforts and the supervision of **Prof. Dr. Ahmed Abdel Ghani**.

My sincere thanks are presented to *Prof. Dr. Sherif Yehia* for helping me learn the computational codes.

I would also thank *Ass. Prof. Dr. Mona Abdel Aziz* for her guidance, support and effect in checking and editing this study.

I would also extend my special thanks to **Prof. Dr. Samy Hashem** who contributed for his scientific discussion.

My thanks are also for my fellow mates *Amani Adel* and *Ahmed Ahdel Kader*.

I would like to thank my friends *Ekram Assad* and *Alaa Tarek*.

I would like to thank my father *Dr. H. G. Afify* for his scientific advice and continuous encouragement.

I would like to thank my brother and my sister.

Last but not least, my deep thanks to my husband *Mohamed Helal* for everything he brought and still brings for me.

Rana Hesham

## **ELSEVIER**

# Track Your Accepted Article

The easiest way to check the publication status of your accepted article

#### Magnetothermal properties and magnetocaloric effect in ErFe2 compound

Article reference

Journal

Corresponding author

First author

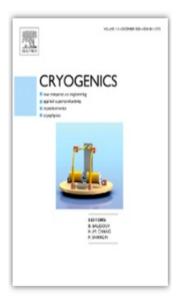
Received at Editorial Office

Article revised

Article accepted for publication

JCRY\_103229

Cryogenics


Rana Hesham

Rana Hesham

28 Jan 2020

20 Sep 2020

13 Nov 2020



Last update: 30 Nov 2020 ☐ Share via email

**⊅ISSN 0011-2275** 

| List of         | f Tables                         |                                                    | V  |
|-----------------|----------------------------------|----------------------------------------------------|----|
| List of         | f Figures                        |                                                    | vi |
| Abstr           | act                              |                                                    | X  |
| English summary |                                  |                                                    | xi |
| Chapt           | ter 1                            | Introduction                                       | 1  |
| 1.1             | Magne                            | Magnetic materials                                 |    |
|                 | 1.1.1                            | Diamagnetic materials                              | 1  |
|                 | 1.1.2                            | Paramagnetic materials                             | 2  |
|                 | 1.1.3                            | Antiferromagnetic materials                        | 2  |
|                 | 1.1.4                            | Ferrimagnetic materials                            | 3  |
|                 | 1.1.5                            | Ferromagnetic materials                            | 4  |
| 1.2             | 1.2 Weiss molecular field theory |                                                    | 4  |
|                 | 1.2.1                            | Weiss molecular field theory of ferromagnetism     | 4  |
|                 | 1.2.2                            | Weiss molecular field theory of antiferromagnetism | 5  |
|                 | 1.2.3                            | Weiss molecular field theory of ferrimagnetism     | 6  |
| 1.3             | Physic                           | al origin of Weiss field                           | 7  |
| 1.4             | Compe                            | ensation temperature                               | 8  |
| 1.5             | Rare-e                           | arth elements and transition metals                | 9  |

|           |     | 1.5.1         | Rare-earth elements                    | 9  |
|-----------|-----|---------------|----------------------------------------|----|
|           |     | 1.5.2         | Transition metals                      | 10 |
|           |     | 1.5.3         | Rare-earth intermetallic compounds     | 10 |
|           | 1.6 | Magnet        | ocaloric effect                        | 11 |
|           |     | 1.6.1         | Historical introduction                | 11 |
|           |     | 1.6.2         | Applications of MCE                    | 12 |
|           |     | 1.6.3         | Literature survey                      | 13 |
|           |     | 1.7           | Aim of the work                        | 14 |
| Chapter 2 |     | r 2           | Theoretical model and computation      | 15 |
|           | 2.1 | Density       | functional theory                      | 15 |
|           |     | 2.1.1         | Introduction                           | 15 |
|           |     | 2.1.2         | Schrödinger equation                   | 15 |
|           |     | 2.1.3         | Many body problem                      | 16 |
|           |     | 2.1.4         | Born-Oppenheimer approximation         | 16 |
|           |     | 2.1.5         | Density functional theory (DFT)        | 17 |
|           |     | 2.1.6         | Kohn-Sham equations                    | 18 |
|           |     | 2.1.7         | The exchange correlation functional    | 19 |
|           |     | 2.1.8         | Wien2k code                            | 22 |
|           | 2.2 | Thermo effect | magnetic properties and magnetocaloric | 22 |
|           |     | 2.2.1         | Magnetic properties                    | 22 |
|           |     | 2.2.2         | Thermodynamic properties               | 24 |
|           |     |               | 2.2.2.1 Heat capacity                  | 24 |

|               |         | 2.2.2.2 Entropy                 | 27 |
|---------------|---------|---------------------------------|----|
|               | 2.2.3   | Magnetocaloric effect           | 30 |
|               |         |                                 |    |
| Chapte        | er 3    | Results and discussion          | 35 |
| 3.1           | Introdu | action                          | 35 |
| 3.2           | Magne   | tization                        | 36 |
| 3.3           | Heat ca | apacity                         | 45 |
|               | 3.3.1   | Electronic heat capacity        | 45 |
|               | 3.3.2   | Lattice heat capacity           | 47 |
|               | 3.3.3   | Magnetic heat capacity          | 48 |
|               | 3.3.4   | Total Heat capacity             | 50 |
| 3.4           | Entrop  | y                               | 51 |
|               | 3.4.1   | Electronic entropy              | 51 |
|               | 3.4.2   | Lattice entropy                 | 52 |
|               | 3.4.3   | Magnetic entropy                | 52 |
|               | 3.4.4   | Total entropy                   | 55 |
| 3.5           | Magne   | tocaloric effect                | 55 |
|               | 3.5.1   | Isothermal change in entropy    | 56 |
|               | 3.5.2   | Adiabatic change in temperature | 58 |
| Conclu        | sions   |                                 | 61 |
| References    |         | 63                              |    |
| الملخص العربي |         |                                 | Í  |

### **List of Tables**

| Table 1 | The values of molecular-field coefficients or DyFe <sub>2</sub> , ErFe <sub>2</sub> and TmFe <sub>2</sub>                                                                              | 38 |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 2 | Canting angle for Dy and Fe sublattices at $T = 301 \text{ K}$ and $H = 3, 6, 8$ and $10T$ for $DyFe_2$                                                                                | 42 |
| Table 3 | Canting angle for Er and Fe sublattices at $T = 301 \text{ K}$ and $H = 3,6,8$ and $10T$ for $ErFe_2$                                                                                  | 42 |
| Table 4 | Canting angle for Tm and Fe sublattices at T = 141 K and H = 3,6,8 and 10T for <i>TmFe</i> <sub>2</sub>                                                                                | 43 |
| Table 5 | The magnetization and the magnetic fields for R and Fe sublattices at $T = 0.64 T_{comp}$ and H = 0 T for $DyFe_2$ , $ErFe_2$ and $TmFe_2$                                             | 45 |
| Table 6 | The maximum values of direct and inverse magnetocaloric effect for different field changes for our theoretical results, using trapezoidal rule, compared with the experimental results | 57 |
| Table 7 | The values of $\Delta T_{ad}$ for different field changes                                                                                                                              | 59 |

# **List of Figures**

| Fig 1.1 | Paramagnetic materials                                                                                                                                                                                                                     | 2  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Fig 1.2 | Antiferromagntic materials                                                                                                                                                                                                                 | 3  |
| Fig 1.3 | Ferrimagnetic materials                                                                                                                                                                                                                    | 3  |
| Fig 1.4 | Ferromagnetic materials                                                                                                                                                                                                                    | 4  |
| Fig 1.5 | Two examples of spontaneous magnetization versus temperature curves predicted by the molecular field theory. (a) The molecular field on A sublattice is the strongest. (b) The molecular field on B sublattice is the strongest            | 9  |
| Fig 1.6 | Various shells in rare-earth ions. The incomplete 4f shell is screened from other atoms by the fifth shell. (The sixth shell is usually ionized)                                                                                           | 10 |
| Fig 2.1 | Flow chart of the n <sup>th</sup> iteration in the self consistent procedure to solve Kohn-Sham equations                                                                                                                                  | 21 |
| Fig 2.2 | Schematically the total entropy as a function of magnetic field H and temperature T, schematically illustrating the definition of the isothermal magnetic entropy change $\Delta S_M$ and the adiabatic temperature change $\Delta T_{ad}$ | 30 |
| Fig 3.1 | The magnetization of each sublattice and the total magnetization Vs. temperature for ferrimagnetic ErFe <sub>2</sub> at zero magnetic field                                                                                                | 36 |
| Fig 3.2 | The total magnetization Vs. temperature for ferrimagnetic TmFe <sub>2</sub> , ErFe <sub>2</sub> and DyFe <sub>2</sub> at zero magnetic field                                                                                               | 37 |