

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Effect of Incremental Hemodialysis on Residual Kidney function and other Laboratory parameters In End stage Renal Disease patients starting Dialysis

Thesis

Submitted for Partial Fulfillment of M.D. Degree in **Internal Medicine**

By

Lotfy Mohamed Lotfy Abuelanin

M.Sc Internal medicine Zagazig University

Under Supervision of

Prof. Dr. Magdy Mohamed EL-Sharkawy

Professor of Internal Medicine Faculty of Medicine – Ain Shams University

Dr. Haitham Ezzat Abdel-aziz

Assistant Professor of Internal Medicine Faculty of Medicine – Ain Shams University

Dr. Mohamed Saeed Hassan

Lecturer of Internal Medicine Faculty of Medicine – Ain Shams University

Dr. Lina Essam Khedr

Lecturer of Internal Medicine Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Dedication

To the soul of my
Father and uncle
They give me everything, I gave them nothing
To My Dear Mother
To my Beloved Wife

To all my family and friends who supported And helped me during working on this research

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I wish to express my deep appreciation to Prof. Dr. Magdy Mohamed EL-sharkawy, Professor of Internal Medicine, nephrology, Ain shams University for his close supervision, valuable instructions and continuous guidance and patience. He has generously devoted much of his time and effort to plan and supervise this study, making me feel great honor to work under his supervision.

I would like to express my sincere gratitude to assistant Prof. Dr. Haitham Ezzat Abdel-aziz, Professor of Internal Medicine, nephrology, Ain shams University for his sincere support, patience and guidance of this work.

I owe to Dr. Mohamed Saeed Hassan, Professor of Internal Medicine, nephrology, Ain shams University for his support and guidance of this work.

Thanks a lot for Dr. Lina Essam Khedr, Lecturers of Internal Medicine, nephrology, Ain shams University for their support.

Lotfy Mohamed Lotfy Abuelanin

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	5
Review of Literature	
Incremental Hemodialysis	6
Residual Kidney Function	40
Patients and Methods	67
Results	73
Discussion	87
Summary	97
Conclusion and Recommendations	100
References	101
Arabic Summary	

List of Tables

Table No	. Title	Page No.
Table (1):	Perceived barriers to incremental hemodialysis.	35
Table (2):	Summary of randomized pilot trials in the study frequent hemodialysis	
Table (3):	Total kidney function—a new conceptual franto assess kidney replacement therapies	
Table (4):	Characteristics of Filtration Markers Use Measurement and Estimation of Residual I Function	Kidney
Table (5):	Residual Kidney Function Measurement Exogenous Filtration Markers	•
Table (6):	Residual Kidney Function Estimation Using Concentrations of Endogenous Filtration Mark	
Table (7):	Base line demographic date of the studied pati	ents73
Table (8):	Follow up of laboratory parameters amore studied patients during the study period	
Table (9):	Follow up of dialysis Adequacy, RKF, Volume, Urine urea and Fluid gain amos studded patients during the studded period	ng the

List of Figures

Fig. No.	Title Page	No.
Figure (1):	Hypothetical plots of different patterns of progression from chronic kidney disease (CKD) to end-stage kidney disease (ESKD)	14
Figure (2):	Extrarenal clearance of iohexol	65
Figure (3):	Diagnostic accuracy for estimating $CL_{UREA} \ge 2 \text{ mL/min.}$	66
Figure (4):	Etiology of ESRD among the studied patients	74
Figure (5):	Change in S. creatinine among the studied patients	77
Figure (6):	Change in S. Urea before dialysis among the studied patients	77
Figure (7):	Change in S. Urea after dialysis among the studied patients	78
Figure (8):	Change in S. potassium among the studied patients	78
Figure (9):	Change in S. Hb among the studied patients	79
Figure (10):	Change in S. Calcium among the studied patients.	79
Figure (11):	Change in S. Bicarbonate among the studied patients	80
Figure (12):	Change in S. Bicarbonate among the studied patients	80
Figure (13):	Change in S. Phosphorus among the studied patients	
Figure (14):	Change in S. Albumin among the studied patients	
Figure (15):	Change in Renal KT/V among the studied patients	84
Figure (16):	Change in RKF among the studied patients	84
Figure (17):	Change in KRU among the studied patients	85

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (18):	Change in Urine volume among patients	
Figure (19):	Change in Urine Urea among the stu	idied patients 86
Figure (20):	Change in Fluid gain among the stud	died patients86

List of Abbreviations

Abb.	Full term
AAKHI	Advancing american kidney health institute
	Adequacy of Peritoneal dialysis in Mexico
	Beta-2- microglobulins
	Body surface area
	Beta trace protein
	Blood urea nitrogen
CANUSA	
CHOICE	Choices for healthy outcomes in caring for endstage renal disease
CI	Confidence interval
<i>CKD</i>	Chronic kidney disease
<i>CMS</i>	Centers for medicare and Medicaid services
<i>DA</i>	Dalton
<i>D-LITE</i>	Dialysis less frequent in the elderly
DM	Diabetes mellitus
<i>EDTA</i>	Ethylene diamine tetra acetic acid
eGFR	Estimated glomerular filtration rate
<i>EKR</i>	Equivalent renal clearance
ELISA	Enzyme linked immunosorbent assay
<i>ESCO</i>	End stage renal diseases seamless care
	organization
<i>ESKD</i>	End stage kidney disease
<i>ESRD</i>	End stage renal disease
<i>FHN</i>	Frequent hemodialysis network
<i>GFR</i>	Glomerular filtration rate
<i>GN</i>	Glomerulonephritis
НВ	Hemoglobin
HD	Hemodialysis
<i>HEMO</i>	Hemodialysis

List of Abbreviations (Cont...)

Abb.	Full term
HPLC	High performance liquid chromatography
	Highly significant
HTN	
	Inter dialytic weight gain
	Incremental hemodialysis in incident patients
K	•
	Kidney disease outcome quality initiative
	Kidney function tests
KG	
<i>KRU</i>	Clearance of urea
<i>KT/V</i>	K clearance of urea T time V body volume
LC-MS/MS	Liquid chromatography-mass spectrometry
mGFR	Measured glomerular filtration rate
NCDs	National cooperative dialysis study
NECOSAD	Netherlands cooperative study on adequacy of dialysis
NKF-KDOQI	National kidney foundation-kidney disease outcmes quality initiative
<i>NS</i>	Non significant
PD	Peritoneal dialysis
Ph	Phosphorus
<i>PKD</i>	Poly cystic kdney disease
PTH	Parathyroid hormone
<i>RAAS</i>	Renin angiotensin aldosterone system
<i>RCT</i>	Randomized controlled trials
<i>RKF</i>	Residual kidney function
<i>ROC</i>	Receiver operating characteristic
<i>RRF</i>	Residual renal function
<i>SD</i>	Stander deviation

List of Abbreviations (Cont...)

Abb.	Full term
<i>SPECT</i>	Single-photon emission computed tomography
<i>SPSS</i>	Statistical package of social services
<i>TBW</i>	Total body water
TWO PLUS-HD	Twice weekly versus thrice weekly hemodialysis in patients with incident end stage kidney disease
<i>URR</i>	Urea reduction ratio
<i>USRDs</i>	United states renal data system
UV	Urine volume
<i>VTM</i>	Variable target model

INTRODUCTION

Incremental dialysis uses the concept of adjusting dialysis dose according to RRF so that the dialysis dose is individualized, the basis is to supply sufficient dialysis to provide supraminimum removal of uremic solutes and control of hypervolemia and then escalating. The dose of dialysis as RRF declines (Daugirdas and Van store 2015).

In the developed world, maintenance hemodilaysis shifted from being given tow times a week with longer duration in 1960s and 1970s, to three times aweek. in 1980s, however there was no clinical trial to compare out comes before or after the switch was made. At present in the developing world especially India and china, a huge fraction of the dialysis population Is undergoing twice a week dialysis due to cost and logistic issue (**ROCCO et al., 2011**).

One aspect high lighted by most of the published experiences is that starting treatment with incremental hemodilaysis achieves better preservation of residual renal function (**Obi et al., 2016**)

Most renal units do not account for the presence of RRF in the HD prescription; however there has been renewed interest in this concept, with some recent observational studies suggesting that in criminal approach to HD initiation and less

1