

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University
Faculty of Engineering
Mechanical Power Engineering Department

Computational Modeling of Transitional Flow over Low Reynolds Number Airfoils

A Thesis Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Mechanical Engineering

By

Mohannad Yahia Mohammed Ibrahim Al Orabi

Bachelor of Science in Mechanical Power Engineering Faculty of Engineering, Ain Shams University, 2013

Supervised by

Prof. Dr. Nabil Abdel-Aziz Mahmoud

Mechanical Power Department Faculty of Engineering Ain Shams University

Prof. Dr. Ahmed Mohamed Reda Elbaz

Mechanical Power Department Faculty of Engineering Ain Shams University

Dr. Ashraf Moustafa Hamed

Mechanical Power Department Faculty of Engineering Ain Shams University

Board of Supervisors

The undersigned certify that they have read and recommended to the Faculty of Engineering, Ain Shams University, for acceptance a thesis entitled "Computational Modeling of Transitional Flow Over Low Reynolds Number Airfoils", submitted by Mohannad Yahia Mohammed Ibrahim Al-Orabi, in Partial Fulfillment for the Requirements of the Degree of Master of Science in Mechanical Engineering.

	Signature
Prof. Dr. Nabil Abdel-Aziz Mahmoud	•••••
Mechanical Power Engineering Department Faculty of Engineering Ain Shams University	
Prof. Dr. Ahmed Mohamed Reda Elbaz	•••••
Mechanical Power Engineering Department Faculty of Engineering Ain Shams University	
Dr. Ashraf Moustafa Hamed	•••••
Mechanical Power Engineering Department Faculty of Engineering Ain Shams University	

Date: / /2021

Examiners Committee

The undersigned certify that they have read and recommended to the Faculty of Engineering, Ain Shams University, for acceptance a thesis entitled "Computational Modeling of Transitional Flow Over Low Reynolds Number Airfoils", submitted by Mohannad Yahia Mohammed Ibrahim Al-Orabi, in Partial Fulfillment for the Requirements of the Degree of Master of Science in Mechanical Power Engineering.

	Signature
Prof. Dr. Osama Ezzat Adbel Latif	•••••
Mechanical Power Engineering Department Faculty of Engineering Benha University	
Prof. Dr. Mahmoud Adbel Rashid Nossir	•••••
Mechanical Power Engineering Department Faculty of Engineering Ain Shams University	
Prof. Dr. Nabil Abdel-Aziz Mahmoud	•••••
Mechanical Power Engineering Department Faculty of Engineering Ain Shams University	
Prof. Dr. Ahmed Mohamed Reda Elbaz	••••
Mechanical Power Engineering Department Faculty of Engineering Ain Shams University	

Date: / /2021

Statement

This thesis is submitted in partial fulfillment for the degree of Master of Science in Mechanical Power Engineering to the Faculty of Engineering, Ain Shams University.

The present work in this thesis was conducted by the author, primarily at the laboratories of the Mechanical Power Engineering Department, Faculty of Engineering, Ain Shams University.

No part of this thesis has been submitted for degree or qualifications at any other universities.

S	5.	į	g	r	l	a	t	u	1	•	2

Mohannad Yahia Mohammed Ibrahim Al Orabi

Date: / /2021

Paper Publication

Mohannad Y. Al Orabi, Ahmed M. R. Elbaz, Nabil A. Mahmoud, Ashraf M. Hamed. Computational modeling of transitional flow over NACA-0018 airfoil at low Reynolds Number, International Journal of Advance Research, Ideas and Innovations in Technology.

https://www.ijariit.com/manuscript/computational-modeling-of-transitional-flow-over-naca-0018-airfoil-at-low-reynolds-number/

Researcher Data

Name: Mohannad Yahia Mohammed Ibrahim Al Orabi.

Date of birth: 9 / 9 / 1991

Academic degree: Bachelor of Science in Mechanical Engineering

Field of specialization: Mechanical Power Engineering.

University issued degree: Faculty of engineering - Ain Shams University.

Date of issued degree: 2013.

Abstract

Predicting the aerodynamic aspects of airfoils for various engineering applications is

considered one of the most aerodynamic researcher's objectives. This can actually be

accomplished through different theoretical, experimental and numerical approaches. Each of

such techniques has its own advantages and weaknesses represented in accuracy and

complexity. Computational fluid dynamics (CFD) is considered one of the most common

techniques used in such studies.

This thesis introduces a full numerical study of the NACA-0018 airfoil operating at low

chord R_e of 10⁵ that provides overall optimized numerical procedures for accurate transition

predictions, thus the airfoil aerodynamic characteristics can be obtained precisely.

All numerical computations were performed using Reynolds-Averaged Navier-Stokes

(RANS) equations in two-dimensional simulations using the ANSYS-FLUENT 19.0. The

transition modeling was provided as the main strategy obtaining the airfoil associated flow

field.

The numerically predicted results were compared to previously obtained experimental data in

order to validate the used computational procedures, which showed a good agreement.

Keywords: Aerodynamics, NACA-0018 airfoil, Transition Modeling, Low Reynolds number

airfoils, CFD, RANS solver.

VII

Acknowledgment

I would like to express my greatest gratitude to Prof. Dr. Nabil Abdel-Aziz Mahmoud, Prof. Dr. Ahmed Mohamed Reda Elbaz and Dr. Ashraf Moustafa Hamed for guiding and supervising throughout this research.

Nomenclature

Abbreviations

2D	Two-Dimensional
3D	Three-Dimensional
AOA	Angle Of Attack
ASW	Aerodynamic straight wall
CFD	Computational Fluid Dynamics
DNS	Direct Numerical Simulation
ERCOFTAC	European Research Community On Flow Turbulence And Combustion
GSW	Geometric Straight Wall
LES	Large Eddy Simulation
LSB	Laminar Separation Bubble
RANS	Reynolds Averaged Navier-Stokes
RMS	Root Mean Square
SST	Shear Stress Transport

Greek Letters		Units
c	Chord length	[m]
C_{ax}	Blade axial chord length	[m]
C_D	Drag coefficient	[-]
$\mathrm{C_{f}}$	Skin friction coefficient	[-]
C_{L}	Lift coefficient	[-]
C_{P}	Surface pressure coefficient of the airfoil	[-]
$C_{P,W}$	Surface pressure coefficient of the domain wall boundaries	[-]
F_D	Drag force	[N]

F_{L}	Lift force	[N]
K	Turbulent kinetic energy	$[m^2.S^{-2}]$
K	Flow acceleration parameter	[-]
P	Surface pressure at a location on the airfoil surface	[Pa]
P_{W}	Surface pressure at a location on the domain wall boundaries	[Pa]
P_{∞}	Free stream static pressure	[Pa]
Re	Reynolds number based on airfoil chord length	[-]
Re_{θ}	Momentum thickness Reynolds number	[-]
$\widetilde{R}e_{\theta}$	Local transition onset momentum thickness Reynolds number	[-]
Tu	Turbulence intensity	[%]
U	Local mean velocity	[m/s]
U_{e}	Edge velocity	[m/s]
U_{∞}	Free stream velocity	[m/s]
u_{τ}	Friction velocity	[m/s]
ũ	Local root-mean-square velocity	[m/s]
U^{+}	The dimensionless velocity	[-]
X	Distance measured from the airfoil model axle in the stream-wise location	[m]
x	Distance measured from the airfoil leading edge along the chord	[m]
$x_{ m R}$	x location of reattachment	[m]
$x_{ m S}$	x location of separation	[m]
x_{T}	x location of transition	[m]
Y	Vertical distance from the airfoil model axle	[m]
у	Distance from the airfoil model surface	[m]
y^+	Non dimensional distance from wall	[-]
ỳ	Vertical distance to nearest wall	[m]

γ	Intermittency	[-]
δ	Boundary layer thickness	[m]
θ	Boundary layer momentum thickness	[m]
μ	Molecular viscosity	[Pa S]
μ_{t}	Eddy viscosity	[Pa S]
ρ	Density	[kg.m ⁻³]
v	Dynamic viscosity	$[m^2/s]$
ω	Specific turbulence dissipation rate	$[\mathrm{m}^2.\mathrm{S}^{-3}]$
$\tau_{\rm w}$	Wall shear stress	[Pa]

Subscripts

L.E	Airfoil leading edge
S	Separation location as predicted from skin friction coefficient distribution
S_P	Separation location as predicted from surface pressure coefficient distribution
T	Transition location as predicted from skin friction coefficient distribution
T_{P}	Transition location as predicted from surface pressure coefficient distribution
R	Reattachment location as predicted from skin friction coefficient distribution
R_P	Reattachment location as predicted from surface pressure coefficient distribution
T.S	Turbulent separation

Table of Contents

Abstract		VII
Nomenclati	ure	IX
List of Figu	ıres	XIV
List of Tab	les	XV
Chapter 1.		1
Introductio	on	1
1.1. Int	troduction	1
1.2. Ai	rfoil boundary layer	3
1.3. Bo	oundary layer separation physics	3
1.4. Tr	ansition	4
1.5. Tr	ansition Modes	5
1.5.1	Natural Transition	5
1.5.2.	Bypass Transition	6
1.5.3.	Separation Induced Transition	7
1.5.4.	Reverse Transition	9
Chapter 2.		10
Literature 1	Review	10
2.1. In	troductiontroduction	10
2.2. Tr	ansition Prediction	10
2.2.1.	Direct Numerical Simulation (DNS)	10
2.2.2.	Large Eddy Simulation	12
2.2.3.	e ⁿ Method	13
2.2.4.	Empirical Correlations	15
2.2.5.	Intermittency Models	16
2.2.6.	Low-Re Turbulence models	17
2.3. Pr	evious Studies on Airfoils	20
2.3.1.	Experimental Studies	20
2.3.2.	Computational Studies	21
2.4. Ob	ojective of the Present Work	
Chapter 3.		23
Computation	onal Methodology	23