

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

ALLEVATING THE IMPACT OF SALINTY STRESS ON MAIZE PLANTS USING SOME ANTIOXIDANTS

Submitted By Maha Abdel Fattah Ibrahim Dekhil

B.Sc. of Agricultural Science, Faculty of Agriculture, Cairo University, 2013

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Agricultural Sciences Institute of Environmental Studies and Research Ain Shams University

2021

APPROVAL SHEET ALLEVATING THE IMPACT OF SALINTY STRESS ON MAIZE PLANTS USING SOME ANTIOXIDANTS

Submitted By Maha Abdel Fattah Ibrahim Dekhil

B.Sc. of Agricultural Science, Faculty of Agriculture, Cairo University, 2013 A Thesis Submitted in Partial Fulfillment

Of The Requirement for the Master Degree In

Environmental Sciences
Department of Environmental Agricultural Sciences
This thesis was discussed and approved by:

Name Signature

1-Prof. Dr. Sohair Elayan Dessokey Elayan

Emeritus Prof. of Agronomy Faculty of Agriculture Cairo University

2-Prof. Dr. Said Awad Shehata

Emeritus Prof. of Plant Physiology, Department of Plant Agriculture Faculty of Agriculture Ain Shams University

3-Prof. Dr. Sanaa Abdel Rahman Zaghlool

Prof. of Plant Physiology, Department of Plant Agriculture Faculty of Agriculture Ain Shams University

4-Prof. Dr. Hani Saber Sayed Saudy

Prof. of Agronomy, Department of Agronomy Faculty of Agriculture Ain Shams University

5-Dr. Mohamed Farag Mohamed Ibrahim

Associate Prof. of Plant Physiology, Department of Plant Agriculture Faculty of Agriculture
Ain Shams University

2021

ALLEVATING THE IMPACT OF SALINTY STRESS ON MAIZE PLANTS USING SOME ANTIOXIDANTS

Submitted By Maha Abdel Fattah Ibrahim Dekhil

B.Sc. of Agricultural Science, Faculty of Agriculture, Cairo University, 2013

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences
Department of Environmental Agricultural Sciences

Under The Supervision of:

1-Prof. Dr. Sanaa Abdel Rahman Zaghlool

Prof. of Plant Physiology, Department of Plant Agriculture Faculty of Agriculture Ain Shams University

2-Prof. Dr. Hani Saber Sayed Saudy

Prof. of Agronomy, Department of Agronomy Faculty of Agriculture Ain Shams University

3-Dr. Mohamed Farag Mohamed Ibrahim

Associate Prof. of Plant Physiology, Department of Plant Agriculture Faculty of Agriculture
Ain Shams University

2021

ACKNOWLEDGEMENT

First of all, I express my profound thanks to **ALLAH** who supported me and provided with strength and patience to complete this work.

I would like to express my deep appreciation and gratitude to **Dr. Sanaa Abdel-Rahman Mostafa Zaghlool,**Prof. of Plant Physiology, Faculty of Agriculture, Ain Shams University (main Supervisor) for her supervision, suggesting the problem, faithful assistance, generous help, and precious advice during the progress of this work

I'm deeply indebted to **Dr. Hani Saber Saudy,**Prof. of Agronomy,Faculty of Agriculture, Ain Shams Universityfor his supervision, faithful assistance, encouragement and valuable advice in the execution of the work, kindly help in the writing and discussion of results and constructive criticism.

Heartily feeling thanks and gratefulness are extended to **Dr.Mohamed Farag Mohamed** Associate Prof. of Plant Physiology, Faculty of Agriculture, Ain Shams University for offering valuable suggestion and advising in planning this thesis, kindly help in the writing and discussion of results and constructive criticism.

Thanks to all staff members of Central Administration for Testing Seed & Certification, A.R.C. and staff members of Botany DepartmentFaculty of Agriculture, Ain Shams University, for their help during the performance of this study.

Last but not least, I would express my gratitude to my dear family and my friends for their patience and continuous encouragement during my academic study.

ABSTRACT

Maha Abdel Fattah Ibrahim Dekhil, Alleviating The Impact of Salinity Stress on Maize Plants using some Antioxidants, Unpublished M. Sc. Thesis, Agricultural environment Science, Inst. of Environ. Studies and Res., Ain shams univ.2021.

The effect of five foliar applications [α -tocopherol (25 and 50) ppm) and selenium, Se, (Na₂SeO₄ at 2.5 and 5 µM), in addition to the control treatment)] on maize plants cv. Giza 310 irrigated with three concentrations of saline water (0, 50 and 100 mM NaCl) were investigated. Our findings revealed that the treatment of 2.5 µM Na₂SeO₄ achieved the highest significant increases in leaf area, leaves fresh weight, stem fresh weight, total shoot fresh weight, leaves dry weight, stem dry weight and total shoot dry weight, as well as, leaf relative water content under different tested levels of salinity. Application of 25 ppm α tocopherol led to the highest significant increases in Chl a, Chl b and carotenoids under different investigated levels of salinity. Application of 25 ppm α tocopherol and 2.5 µM Na₂SeO₄ gave the lowest significant values of Na⁺ and Na⁺/K⁺ ratio compared to the other treatments under different levels of salinity. The treatment of 2.5 µM Na₂SeO₄ under 100 mM NaCl resulted in the highest significant values in the activity of POD and PPO compared to the other treatments.. Application of 25 ppm α tocopherol achieved the highest significant increases in the ear weight/plant, weight of grains/ear and weight of 100 grains compared to the other treatments. The treatment of 2.5 µM Na₂SeO₄ or 25 ppm α tocopherol under non saline conditions achieved the highest significant grain viability.

Key words: Maize, growth, salinity, α -tocopherol, selenium, leaf relative water content, Antioxidant enzymes.

List of Abbreviations

FAO Food and Agriculture Organization

ROS Reactive oxygen species

Se Selenium

Toc α -tocopherol

dS/m⁻¹ deciSiemens per metre

mS/cm milliSiemeus per centimeter

MPa Mega Pascal

mM milliMolar

μM microMolar

Ppm parts per million

ECi Electrical conductivity of water

ECs Electrical conductivity of soil solution

ECe Electrical conductivity of saturated soil paste extract

LRWC Leaf relative water content

Chl a Chlorophyll a
Chl b Chlorophyll b

CRBD Completely randomized block design

POD Peroxidase

PPO Polyphenol oxidase

FW Fresh weight

DW Dry weight

TW Turgid weight

DAS Days after sowing

Contents	Page	
Introduction	1	
Review of Literature	4	
1. Effect of salinity stress on maize plants	4	
1.1. Growth and Development	4	
1.2. Yield and its attributes	6	
1.3. Leaf relative water content	7	
1.4. Biochemical constituents	8	
1.4.1. Photosynthetic pigments	8	
1.4.2. Antioxidants Enzymes	9	
1.5. Leaf mineral Sodium and Potassium content	10	
2. Effect of α -tocopherol on plants under salinity stress	12	
2.1. Growth and Development	12	
2.2. Yield and its attributes	13	
2.3. Leaf relative water content	14	
2.4. Biochemical constituents	15	
2.4.1. Photosynthetic pigments	15	
2.4.2. Antioxidants Enzymes	16	
2.5. Leaf mineral Sodium and Potassium content	17	
3. Effect of Selenium on plants under salinity stress	18	
3.1. Growth and Development	18	
3.2. Yield and its attributes	20	
3.3. Leaf relative water content	21	
3.4. Biochemical constituents	21	
3.4.1. Photosynthetic pigments	21	
3.4.2. Antioxidants Enzymes	23	
3.5. Leaf mineral Sodium and Potassium content	24	

Materials and Methods	26
Experiment Layout and growth conditions	26
Studied parameters	27
1. Vegetative growth	27
2. Leaf relative water content (LRWC)	28
3. Biochemical constituents	28
3.1. Photosynthetic pigments	28
3.2. Leaf minerals Sodium and Potassium content	28
3.3. Enzyme activity	29
3.3.1. Peroxidase (POX) assay	29
3.3.2. Polyphenol oxidase (PPO)	29
4. Yield and its attributes	30
5. Viability of the produced grains	30
Statistical analysis	30
Results and Discussion	31
1- Growth parameters	31
2- Leaf relative water content (LRWC)	43
3- Photosynthetic pigments	45
4- Leaf mineral Sodium and Potassium content	53
5- Activity of antioxidant enzymes	58
6- Grains yield and its attributes	62
7- Viability of the produced grains	68
Summary and Conclusion	70
Reference	74
Arabic Summary	

List of Table

No.	Name	Page
1	Effect of foliar application of α -tocopherol (Toc) and Na2SeO4 (Se) on plant height (cm) of maize plants irrigated with three different concentrations of saline water as NaCl at 90 days after sowing in the seasons of 2017 and 2018.	33
2	Effect of foliar application of α-tocopherol (Toc) and Na2SeO4 (Se) on number of leaves of maize plants irrigated with three different concentrations of saline water as NaCl at 90 days after sowing in the seasons of 2017 and 2018.	34
3	Effect of foliar application α -tocopherol (Toc) and Na2SeO4 (Se) on leaf area (cm2) of maize plants irrigated with three different concentrations of saline water as NaCl at 90 days after sowing in the seasons of 2017 and 2018.	35
4	Effect of foliar application of α-tocopherol (Toc) and Na2SeO4 (Se) on leaves fresh weight (g) of maize plants irrigated with three different concentrations of saline water as NaCl at 90 days after sowing in the seasons of 2017 and 2018.	36
5	Effect of foliar application of α-tocopherol (Toc) and Na2SeO4 (Se) on stem fresh weight (g) of maize plants irrigated with three different concentrations of saline water as NaCl at 90 days after sowing in the seasons of 2017 and 2018.	37
6	Effect of foliar application of α-tocopherol (Toc) and Na2SeO4 (Se) on total shoot fresh weight (g) of maize plants irrigated with three different concentrations of saline water as NaCl at 90 days after sowing in the seasons of 2017 and 2018	38

7	Effect of foliar application of α -tocopherol (Toc) and Na2SeO4 (Se) on leaves dry weight (g) of maize plants irrigated with three different concentrations of saline water as NaCl at 90 days after sowing in the seasons of 2017 and 2018.	39
8	Effect of foliar application of α -tocopherol (Toc) and Na2SeO4 (Se) on stem dry weight (g) of maize plants irrigated with three different concentrations of saline water as NaCl at 90 days after sowing in the seasons of 2017 and 2018.	40
9	Effect of foliar application of α -tocopherol (Toc) and Na2SeO4 (Se) on total shoot dry weight (g) of maize plants irrigated with three different concentrations of saline water as NaCl at 90 days after sowing in the seasons of 2017 and 2018.	41
10	Effect of foliar application of α -tocopherol (Toc) and Na ₂ SeO ₄ (Se) on leaf relative water content (%) of maize plants irrigated with three different concentrations of saline water as NaCl at 90 days after sowing in the seasons of 2017 and 2018.	44
11	Effect of foliar application of α -tocopherol (Toc) and Na ₂ SeO ₄ (Se) on the concentration of chlorophyll a (mg.g ⁻¹ F.W) in the leaves of maize plants irrigated with three different concentrations of saline water as NaCl at 90 days after sowing in the seasons of 2017 and 2018.	47
12	Effect of foliar application of α -tocopherol (Toc) and Na2SeO4 (Se) on the concentration of chlorophyll b (mg.g-1 F.W) in the leaves of of maize plant irrigated with three different concentrations of saline water as NaCl at 90 days after sowing in the seasons of 2017 and 2018.	48

49	Effect of foliar application of α-tocopherol (Toc) and Na2SeO4 (Se) on Chlorophyll a/b ratio in the leaves of maize plants irrigated with three different concentrations of saline water as NaCl at 90 days after sowing in the seasons of 2017 and 2018.	13
50	Effect of foliar application of α-tocopherol (Toc) and Na2SeO4 (Se) on the concentration of carotenoids (mg.g-1 F.W) in the leaves of maize plants irrigated with three different concentrations of saline water as NaCl at 90 days after sowing in the seasons of 2017 and 2018.	14
54	Effect of foliar application of α-tocopherol (Toc) and Na2SeO4 (Se) on the concentration of Na (%) in the leaves of maize plants irrigated with three different concentrations of saline water as NaCl at 90 days after sowing in the seasons of 2017 and 2018.	15
55	Effect of foliar application of α -tocopherol (Toc) and Na2SeO4 (Se) on the concentration of K (%) in the leaves of maize plants irrigated with three different concentrations of saline water as NaCl at 90 days after sowing in the seasons of 2017 and 2018.	16
56	Effect of foliar application of α-tocopherol (Toc) and Na2SeO4 (Se) on Na/K ratio in the leaves of maize plants irrigated with three different concentrations of saline water as NaCl at 90 days after sowing in the seasons of 2017 and 2018.	17
59	Effect of foliar application of α-tocopherol (Toc) and Na2SeO4 (Se) on the activity of POD (unit mg-1 protein) in the leaves of maize plants irrigated with three different concentrations of saline water as NaCl at 90 days after sowing in the seasons of 2017 and 2018	18