

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University Faculty of Science Department of Biochemistry

Association analysis of gene polymorphisms of *ABCA7*, *Clusterin* and *MS4A6A* in Alzheimer

Submitted in partial fulfillment for the requirements of the master degree of Science in Biochemistry

Thesis submitted by

Hanem Gameel Abdelrahman

(B.Sc. in Biochemistry, Ain Shams University, 2013)

Under Supervision of

Prof. Dr. Mohamed Ragaa Mohamed

Professor of Biochemistry & Molecular Biology Faculty of Science - Ain Shams University

Dr. Eman Mohamed Saleh

Assistant Professor of Biochemistry Faculty of Science - Ain Shams University

Dr. Abeer Ramadan Salamah

Research Assistant Professor of Molecular genetic Molecular genetics and Enzymology Department National Research Center

Biography

Full Name : Hanem Gameel Abdelrahman

Birth date : 8/01/1992

Birth place : Cairo, Egypt

Graduation date: 2013

Awarded degrees: B.Sc. in Biochemistry, 2013

Grade : Very good

Acknowledgement

All thanks are always to ALLAH, for giving me the ability to complete this work.

It was a great pleasure for me to be supervised by **Prof. Dr.**Mohamed Ragaa Mohamed, Professor of Biochemistry and Molecular Biology, Biochemistry Department, Faculty of Science, Ain Shams University, for his endless help, fatherly attitude, valuable suggestions, and accurate supervision. I am very much honored to have him as my supervisor.

No words could express my sincere and deepest thanks to Dr. Abeer Ramadan Salamah, Research Assistant Professor of Molecular Genetics, Molecular Genetics and Enzymology Department, National Research Centre, for suggesting such an interesting point of research and valuable expertise supervision, also for her revision for every detail, her constant support and encouragement are very much appreciated.

I am greatly indebted and grateful to **Dr. Eman Mohamed**Saleh, Assistant Professor of Biochemistry, Biochemistry
Department, Faculty of Science, Ain Shams University, for her
supervision, accurate revision for every detail and support during
completing this work.

My appreciation is expressed to **Dr. Alyaa Adel saleh**, Assistant Professor of Psychiatry, Psychiatry Department, Faculty of Medicine, Cairo University, for her practical guidance, experience and support during completing this work. I wish to express my deep thanks to **Dr. Noha Ahmed**Sabry, Professor and Head of Psychiatry Department, Faculty of
Medicine, Cairo University, for her support and advice during
completing this work.

Deep endless thanks, greetings and appreciation are going to my **mother and father** for their great help, support and encouragement.

Hanem Gameel Abdelrahman

DEDICATION

To my dear family, I dedicate this work to you for your great support, help and continuos encouragement to perfect my work.

With all love to my mother and father for their support and prayers to fulfill my hopes.

Yours sincerely, Hanem Gameel Abdelrahman

Contents

	Page
List of abbreviations	i
List of tables	iv
List of figures	v
Abstract	viii
Introduction	1
Aim of the work	5
Chapter 1: Review of literature	6
1.1. Nervous system	6
1.1.1. The central nervous system	6
1.1.2. The peripheral nervous system	10
1.1.3. Cells of the nervous system	10
1.2. Dementia	16
1.2.1. Types of Dementia	16
1.3. Alzheimer's Disease	19
1.3.1. Prevalence of Alzheimer's disease	21
1.3.2. Pathophysiology of Alzheimer's disease	22
1.3.2.1. The cholinergic hypothesis	23
1.3.2.2. The role of N-methyl-D-aspartate in	26
Alzheimer's disease	
1.3.2.3. The extracellular deposition of Amyloid	28
protein	
1.3.2.4. Neurofibrillary Tangles	33
1.3.2.5. The role of the reactive oxygen species	34
and oxidative stress	25
1.3.3. Risk factors of Alzheimer's disease	35
1.3.4. Diagnosis of Alzheimer's disease	38
1.3.5. Symptoms of Alzheimer's disease	41
1.3.6. Progression of Alzheimer's disease	42
1.3.7.1 ATD hinding accounts to a second and A.7.	43
1.3.7.1. ATP-binding cassette transporter A7	45
(ABCA7) gene	52
1.3.7.2. Clusterin (<i>CLU</i>) gene (Apolipoprotein J)	52
1.3.7.3. Membrane-Spanning-4-domains, subfamily A, member 6A (<i>MS4A6A</i>) gene	60

	Page
1.3.8. Treatment of Alzheimer's disease	66
Chapter 2: Subjects and Methods	71
2.1. Subjects	71
2.2. Methods	73
2.2.1. Chemicals	74
2.2.2. Equipments and supplies	74
2.2.3. Collection of sample	74
2.2.4. Extraction of genomic DNA from blood samples	75
2.2.5. Determination of the purity of DNA solution	77
2.2.6. Amplification of genomic DNA by PCR	78
2.2.7. Agarose gel electrophoresis of the amplified PCR products	83
2.2.8. Restriction enzyme analysis with (NIaIII, M1uCI and HpyCH4III).	88
2.2.9. Detection of PCR product using gel electrophores is	92
2.2.10. Bioinformatics analysis	93
2.2.11. Purification of PCR product	102
2.2.12. DNA sequencing.	103
2.2.13. Statistical analysis	108
Chapter 3: Results	109
3.1. Demographic data of the study	109
3.2. Molecular studies	110
3.2.1. <i>ABCA7</i> rs3764650 genotype	110
3.2.2. <i>CLU</i> rs11136000 genotype	115
3.2.3. MS4A6A rs610932 genotype	120
Chapter 4: Discussion	132
Conclusions and Recommendations	156
Summary	157
References	160
Arabic Summary	-
Arabic Abstract	-

LIST OF ABBREVIATIONS

Abbreviated name Full name

3'UTR : 3' untranslated region

Aβ : Amyloid beta

ABCA7 : ATP-binding cassette transporter A7

Ach : Acetylcholine

AChE : Acetylcholinesterase AD : Alzheimer's Disease

ADAM : Disintegrin and metalloprotease **AICD** : Amyloid Intra-Cellular Domain

AMPA : α-amino-3-hydroxy-5-methyl-4-isoxazole

propionic Acid

APH-1 : Anterior pharynx defensive phenotype 1

ApoA-I : Apolipoprotein A-I **APOE** : Apolipoprotein E APOE ε4 : Apolipoprotein Ε ε4

APP : Amyloid Precursor Protein

BACE : β - site – APP – cleaving enzyme **BCR** : β cell antigen receptor complex

BBB : Blood brain barrier

Bp : Base pair

BuChE : Butyryl cholin esterase

CDRS : Clinical Dementia Rating Scale

CJD : Creutzfeldt-Jakob disease

CLU : Clusterin

CNS : Central nervous system **CSF** : Cerebrospinal fluid

CT : Computerized tomography **DLB** : Dementia with Lewy bodies **DNA**

: Deoxyribonucleic acid

dNTP : Deoxynucleotide triphosphate

: Statistical Manual of Mental Disorders-5 DSM-5

DTT : Dithiothreitol EC : Entorhinal cortex **EDTA** : Ethylene diamine tetra-acetic acid

FEOAD : Familial early-onset Alzheimer's disease

FTD : Front temporal dementia

g : GramG : Guanine

GABA : Gamma aminobutyric acid

GWAS : Genome-wide association study

HDL : High density lipoproteinIDE : Insulin degrading enzyme

LOAD : Late onset Alzheimer's disease

LRP : Lipoprotein receptor-related protein

LTD : Long-term depression
LTP : Long term potentiation
MCI : Mild Cognitive Impairment
MMSE : Mini-Mental State Examination

MoCA-B : Montreal Cognitive Assessment-Basic

MRI : Magnetic resonance imaging

MS4A6A : Membrane-Spanning-4-domains, subfamily

A, member 6A

NEP: Neprilysin

NFT : Neurofibrillary tangle.

NIH : National Institute of Health

NMDA : N- methyl-D-aspartate

NPH : Normal pressure hydrocephalus

OMIM No. : Online Mendelian Inheritance in Man number,

Aknowledge base of human genes and genetic

disorders

OS : Oxidative stress

PCR : Polymerase chain reaction

PD : Parkinson's disease

PET : Positron emission tomography
PNS : Peripheral nervous system

RAGE : Receptor for advanced glycation end products

RE : Restriction enzyme

RFLP : Restriction fragment length polymorphism

ROS : Reactive oxygen species
SDS : Sodium dodecyl sulfate

SNPs : Single nucleotide polymorphisms

TBE : Tris-borate EDTATBI : Traumatic brain injury

TE: Tris-EDTA

TNF: Tumor necrosis factor

TREM2 : Triggering receptor expressed in myloid cell 2

WHO : World Health Organization

List of tables

No.	Title	Page
2.1.	Primer sequences used in the PCR amplification for the polymorphic loci.	81
2.2.	Reaction composition using Taq PCR Master Mix.	82
2.3.	PCR thermal cycler settings for ABCA7, CLU and MS4A6A amplification.	83
2.4.	Setting up a restriction enzyme digestion.	91
3.1.	Demographic characteristics of controls and cases.	110
3.2.	Comparison between the genotype distributions among the studied subjects (Cases &controls) for <i>ABCA7</i> rs3764650 SNP.	114
3.3.	Comparison between the genotype distributions among the studied subjects (Cases &controls) for <i>CLU</i> rs11136000 SNP.	119
3.4.	Comparison between the genotype distributions among the studied subjects (Cases &controls) for MS4A6A rs610932 SNP.	124
3.5.	APOE $\varepsilon 4$ association with the three different gene polymorphisms in AD patients.	128
3.6.	Correlations between genes frequency and cognitive tests.	131

LIST OF FIGURES

No.	Title	Page
1.1.	Illustrative drawing showing anatomy of the brain and its principal parts.	8
1.2.	The structure of neuron.	11
1.3.	The connection between two neurons.	12
1.4.	The chemical transmission of a nerve impulse at the synapse.	13
1.5.	Glial cells support neurons and maintain their environment.	14
1.6.	The difference between health and Alzheimer's brain.	20
1.7.	Hypothesis for pathophysiology of Alzheimer's disease.	23
1.8.	Several potential roles for N-methyl- D-aspartate receptors (NMDARs) in the amyloid- β (A β) cascade are depicted.	28
1.9.	Schematic of the amyloid precursor protein.	29
1.10.	Amyloidogenic and non-amyloidogenic processing of the amyloid precursor protein.	31
1.11.	Production of amyloid β peptide from sequential proteolytic breaks of the amyloid precursor protein.	32
1.12.	Map of ABCA7 gene.	48
1.13.	Model of ABCA7 gene.	48
1.14.	Possible pathogenic pathways mediated by <i>ABCA7</i> in Alzheimer's disease.	49
1.15.	CLU gene, protein structure and its identified SNPs	53
1.16.	Structure of <i>CLU</i> gene, transcription and translation products.	54