

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Department of Medical Studies for Children

Irisin in Relation to Anthropometric and Metabolic Parameters in Obese Children

A Thesis
Submitted for Partial Fulfillment of PhD Degree
in Child health and Nutrition
(Department of Medical Studies for Children)

Mohammed Mahmoud Mohammed Elbarawy

(M.Sc.in Pediatrics – Cairo University)

Supervised by

Dr. Rehab Abdelkader Mahmoud

Dr. Hala Salah Megahed

Professor of Pediatrics
Faculty of Post Graduate Childhood Studies
, Ain Shams University

Professor of Child Health National Research Centre

Dr. Maha El-Wassef

Professor of Biochemistry National Research Centre

ACKNOWLEDGEMENT

I take this opportunity to express my endless gratitude and appreciation to **Professor/ Rehab Abdelkader Mahmoud** for her great encouragement and unfailing tender advice without which this work would have never been accomplished.

I place on record, my sincere appreciation and special thanks to **Professor/ Hala Salah Megahed** for her generous support and encouragement and careful guidance, words can't help me to express my thanks to her.

I would also like to show My deepest thanks and gratitude to **Professor/ Maha El-Wassef** for her honesty assistance, patience and cooperation which made me truly indented to her.

ABSTRACT

Obese children are more likely to become obese adults, and have a higher risk of morbidity including hypertension, insulin resistance, dyslipidemia, type 2 diabetes mellitus and cardiovascular diseases, many studies revealed that irisin plays a role in the pathogenesis of various compilations.

Objective: To evaluate Irisin level and its relation to anthropometric and metabolic parameters in obese children.

Methodology: The study was carried out at Child Health Clinic-National Research Centre. It included 80 children aged between 6 and 14 years, 40 obese children of both sexes with body mass index $\geq 95^{th}$ percentile for age and sex, in addition to 40 normal weight children with BMI between (15th and 85th percentile) with matching age and sex as control. A detailed history was taken. Full clinical examination, anthropometric assessment, laboratory investigations (including irisin, lipid profile, fasting blood sugar and insulin) and pubertal development was done for each child.

Data was statistically analyzed by SPSS version 16 and appropriate statistical analysis was performed.

Ethical approvals from the ethical committee of Faculty of Post Graduate Childhood Studies and National Research Centre were taken and an informed consent was obtained from the parents after explanation of the

aim of the study and its possible benefits.

Results:

The mean irisin concentration was significantly higher in obese group

 34.07 ± 20.72 pg/ml compared to control group 15.09 ± 8.74 pg/ml;

meanwhile, it showed no statistically significant correlation with

anthropometric measurements including weight and BMI except for waist

circumference and height in control group which showed statistically

significant positive correlation.

The correlations between irisin and biochemical parameters of obese and

control groups was not statistically significant with regards to all

parameters studied including Insulin, HOMA-IR, LDL-C, Cholesterol,

Triglycerides, HDL-C and glucose.

The mean SBP was significantly higher in obese group 101.00 ± 4.96

mmhg compared to control group 98.00 ± 5.16 mmhg, while the mean

DBP in obese group 66.00 ± 4.96 mmhg compared to control group 63.25

± 4.74 mmhg; therefore, it was significantly higher in obese group as

well.

Conclusion: These results imply that irisin as well as other metabolic

syndrome parameters are related to obesity.

Keywords: Irisin - obesity - children.

iii

CONTENTS

	Page
- List of abbreviations	
- List of tables	vii
- List of figures	viii
- Introduction	1
- Aim of the study	3
- Review of literature	
- Chapter One: Obesity	4
- Chapter Two: Risk factor of childhood obesity	23
- Chapter Three: Hormonal changes in obesity	35
- Chapter Four: Role of Irisin in Physiological	43
and Pathological Conditions	
- Subjects and methods	48
- Results	55
- Discussion	71
- Summary	80
- Conclusion	82
- Recommendations	83
- References	84
- Appendix	93

LIST OF ABBREVIATIONS

ADP	Air-Displacement Plethysmography
BAT	Brown Adipose Tissue
BDNF	Brain-Derived Neurotrophic Factor
BIA	Bioelectrical Impedance Analysis
BMI	Body Mass Index
CDC	Centers for Disease Control and Prevention
DBP	Diastolic Blood Pressure
DXA	Dual-Energy X-Ray Absorptiometry
ELISA	Enzyme Linked Immunosorbent Assay
ERK	Extracellular Signal-Related Kinase
FNDC5	Fibronectin Type III Domain Containing 5
HDL-C	High Density Lipoprotein Cholesterol
HOMA-IR	Homeostasis Model Assessment for Insulin Resistance
IFN	Interferons
IL	Interleukins
kDa	Kilodalton
LDL-C	Low Density Lipoprotein Cholesterol
MRI	Magnetic Resonance Imaging
mRNA	Messenger Ribonucleic Acid
P38 MAPK	P38 Mitogen-Activated Protein Kinase

PGC1 a	Peroxisome Proliferator-Activated Receptor Gamma
	Co-Activator 1-Alpha
POMC	Pro-Opiomelanocortin
SBP	Systolic Blood Pressure
T2DM	Type 2 Diabetes Mellitus
TNF	Tumor Necrosis Factor
TV	Television
UCP1	Uncoupling Protein 1
WAT	White Adipose Tissue
WHO	World Health Organization
α -MSH	Alpha-Melanocyte Stimulating Hormone

LIST OF TABLES

Table	Page	
Table (1): Tanner staging	53	
Table (2): The number of children included in this study	55	
Table (3): Comparison between family history in control and	56	
obese groups	56	
Table (4): Comparison between exercise or sports activity in	57	
control and obese groups	57	
Table (5): Comparison between Tanner Staging in control and	50	
obese groups	59	
Table (6): Comparison between anthropometric measurements	(1	
and blood pressure in control and obese groups	61	
Table (7): Comparison between biochemical parameters of	(2)	
control and obese groups	62	
Table (8): Correlations between irisin and anthropometric	<i>C</i> 1	
measurements in control and obese groups	64	
Table (9): Correlations between irisin and biochemical	<i>(5</i>	
parameters in control and obese groups	65	

LIST OF FIGURES

Figure	Page
Fig. (1): Childhood obesity complications	11
Fig. (2): The vicious circle of childhood obesity	33
Fig. (3): Schematic representation of proposed mechanism of release of irisin and its action	40
Fig. (4): Comparison between exercise or sports activity in control and obese groups	58
Fig. (5): Comparison between Tanner Staging in control and obese groups	60
Fig. (6): Scatter plot correlation between irisin and waist circumference in control and obese groups	66
Fig. (7): Scatter plot correlation between irisin and triglycerides in control and obese groups	67
Fig. (8): Scatter plot correlation between irisin and cholesterol in control and obese groups	68
Fig. (9): Scatter plot correlation between irisin and HOMA-IR in control and obese groups	69
Fig. (10): Scatter plot correlation between irisin and BMI in control and obese groups	70

INTRODUCTION

INTRODUCTION

Childhood obesity has become a major global health problem in the recent years. It is the most important public health challenge for the 21st century, not only due to the rapidly increasing prevalence rates among children and adolescents, but also due to the consequences seen into adulthood. Children and adolescents constitute around 15 % of the 1.5 billion obese population; 75 % of them from the developing countries (World Health Organization., 2020).

Obese children are more likely to become obese adults, and have a higher risk of morbidity including hypertension, insulin resistance, dyslipidemia, type 2 diabetes mellitus and cardiovascular diseases. Many of the metabolic and cardiovascular complications of obesity have their origins during childhood and are closely related to the presence of insulin resistance (*Central Disease Control and Prevention*, 2020).

Irisin is a glycosylated polypeptide hormone derived from its precursor fibronectin type III domain containing protein 5, located in the plasma membrane, after the cleavage of its extracellular portion (*Shim et al.*, 2018).

Many studies revealed that irisin is involved in the pathogenesis of various complications of obesity including dyslipidemia, type 2 diabetes mellitus, and arterial hypertension, summarized in the definition of the Metabolic Syndrome (*Meneck et al.*, 2018).