

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University Faculty of Engineering Civil Engineering Department-Structural Dept.

Study on The Structural Behavior of Precast Concrete Dapped-End Beams with Different Reinforcement Detail

By Eng. Osman Mohammed Ezzat

B.Sc. Civil Engineering (Surveying) Benha University, 2007

A Thesis

Submitted in Partial Fulfillment for Requirements of the Degree of Master of Science in Civil Engineering (Structural)

Prof. Dr. Ayman Hussein Hosny Khalil

Professor of Reinforced Concrete Structures, Department of Structural Engineering, Ain Shams University

Prof. Dr. Ashraf Mahmoud Samy Biddah

Professor of Reinforced Concrete Structures, Department of Structural Engineering, Ain Shams University

Dr. Ayman Sayed Abu-Beiah

Assistant Professor of Reinforced concrete, Department of Structural Engineering, Ain Shams University

Supervised by Cairo. A.R.E. 2021

Ain Shams University Faculty of Engineering

<u>By:</u>

Osman Mohammed Ezzat

Thesis:	"Study on the Structural Behavior of Precast Concrete Dapped- End Beams with Difference Reinforcement Detail"		
Master of Civil Engineering (Structural), 2021			
Examiners	s Committee:	<u>Signature</u>	
Professor	Mohamed ElSaid Issa of Reinforced Concrete Structures, Engineering, versity.	••••••	
Professor Faculty of	Ahmed Hassan Ghallab of Reinforced Concrete Structures, Engineering, s University.	•••••	
Professor Faculty of	Ayman Hussein Hosny Khalil of Reinforced Concrete Structures, Engineering, s University.	••••••	
Professor Faculty of	Ashraf Mahmoud Samy Biddah of Reinforced Concrete Structures, Engineering, s University.	•••••	

INFORMATION ABOUT THE RESEARCHER

Name:

Osman Mohammed Ezzat

		Date:	19/04/2021
		Signature:	
current sou.	Hard Precast Building S		– Dubai – U.A.E
Current Job:	Senior Structural Engine	C	ima Omversity – 2007
Degree:	Bachelor of Science in Civil Surveying Engineering Shoubra Faculty of Engineering – Benha University – 2007		
Birth:	Cairo, 2 nd November 19	85	

STATEMENT

This thesis is submitted to the Faculty of Engineering - Ain Shams University for the Degree of **Master of Science** in Civil Engineering (Structural Engineering).

The author carried out the work in this thesis in the Civil Engineering (Structural Section) department, Ain Shams University, from 2015 to 2021.

No part of this thesis has been submitted for a degree or a qualification to any other University or Institution.

Date : 19/04/2021

Name : Osman Mohammed Ezzat

Signature : ______

ACKNOWLEDGMENT

Firstly, the great prayerful thanks to our merciful ALLAH for all his gifts.

I would like to express my deepest thanks and confession of favor to my supervisors, Prof. Dr. Ashraf Biddah, Prof. Dr. Ayman Hussein, and Dr. Ayman Abubeah, for their valuable advice and continuous support.

Special thanks go to American University in Dubai for opening their laboratory to do the required tests.

I would like to thank my friends and colleagues for great gratitude and sincere appreciation goes to my parents for their continuous encouragement and overwhelming support. I wish the merciful give them health and blessing.

Finally, I would like to thank my partner, my wife, for her patience and support also thanks to my son, who gave me the enthusiasm to finish this work.

ABSTRACT

MSc Thesis submitted by Engr. Osman Mohammed Ezzat

Reinforced concrete dapped-end beams are mainly used for precast element construction. Generally, the dapped end is recessed at their end parts and supported by columns, beam ledges, or corbels. The geometric discontinuity of dapped-end beams evokes a severe stress concentration at re-entrant corners that may lead to shear failure. Therefore, stress analysis is required at the re-entrant vicinity for the design requirement of these beams.

Objectives were set and the research methodology was put forward to attain such objectives.

This thesis summary describes the design of dapped ends of the precast concrete beam based on an experimental program to identify the reinforcement schemes' effectiveness. In this research, four reinforced concrete dapped end beams with eight ends having a cross-section corresponding to a (400 mm) deep (200 mm) wide and 2m long.

In the experimental program, four R.C. beams with eight different reinforcement schemes were prepared, cast, and tested up to failure and investigated in the experimental program: the PCI-1, PCI-2, Inclined A_s with welded plate, inclined A_s with Practical anchorage, inclined A_s with proper anchorage, 200% A_s with 50% A_{sh}, 200% A_{sh} with 50% A_s, and practical details under which reinforcement schemes were tested, is described in this Thesis summary. Four Dapped end beams specimens were prepared, cast, and tested up to failure. Finite element modeling was done to verify the results.

The parameters were investigated: amount, arrangement & anchorage of flexural

reinforcements, Shear Friction Reinforcement, and Hanger reinforcement at the

dapped-end area.

Finite element analysis using ANSYS was also conducted to predict the behavior

of the dapped end beams. It has been found that the highest stress concentration

factors occur at the re-entrant corners and their vicinity. the control specimen was

following the PCI design handbook reinforcement arrangement.

The results were presented on charts so as tables and discussed. During the thesis

study, conclusions were drawn, and recommendations for future research and

Engineering practice were suggested to improve the dapped end reinforcement

scheme practices were recommended.

KEYWORDS: Behavior; reinforcement schemes; ultimate; dapped ends.

vi

TABLE OF CONTENTS

EXAMINERS COMMITTEE	i
INFORMATION ABOUT THE RESEARCHER	ii
STATEMENT	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
TABLE OF CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
Chapter (1): INTRODUCTION	1
1.1 General	1
1.2 Preliminary Considerations	1
1.3 Background	2
1.4 Objectives of the Research Work	4
1.5 Thesis Organization	4
Chapter (2): LITERATURE REVIEW	7
2.1 Introduction	7
2.2 Design of Dapped-End Beams	7
2.2.1 The PCI Design Method 7 th Edition	7
2.2.2 The ACI 318-11	11
2.3 Menon – Furlong Design Procedure	13
2.4 Mattock and Chan, 1979	15
2.4.1 Analysis of Dapped-End Beams	17
2.5 Herzinger and El-Badry, 2002	17
2.6 Wang and Guo, 2005	22
2.7 Mohammed and Elliot. 2008	24

2.8 Peng, 2009	29
2.9 Ahmad et al., 2013	30
2.10 Amir Botros., 2015	33
Chapter (3): EXPERIMENTAL WORK	35
3.1 General	35
3.2 Description of the Tested Samples	35
3.3 Design and Detail of the Test Samples	35
3.4 Specimen	37
3.4.1 Specimen (Sample-2) Control	39
3.4.2 Specimen (Sample-1)	42
3.4.3 Specimen (Sample-3)	45
3.4.4 Specimen (Sample-4)	48
3.5 Strain Gauges	51
3.6 Material Properties	54
3.6.1 Reinforcement Scheme	54
3.7 Concrete	54
3.8 Control Specimens	56
3.9 Casting, Compacting, and Curing of Tested Specimens	57
3.10 Equipment and Instrumentation	65
3.11 Testing Setup and Loading Scheme	65
3.12 Testing Procedure	67
Chapter (4): EXPERIMENTAL RESULTS	69
4.1 Introduction	69
4.2 Test Results	69
4.3 Crack Pattern, Load Capacity and Mode of Failure	70
4.4 Load-Deflection Relations	70
4.5 The Summary of Sample 1L Results	70
4.6 The Summary of Sample 2L Results	76

4.7 The Summary of Sample 3L Results	82
4.8 The Summary of Sample 4L Results	87
4.9 The Summary of Sample 1R Results	92
4.10 The Summary of Sample 2R Results	96
4.11 The Summary of Sample 3R Results	102
4.12 The Summary of Sample 4R Results	107
4.13 Summary of Results	112
4.13.1 Sample-1L, 1R, and 4R (Inclined Flexure Reinforcement Ba	rs)112
4.13.2 Sample-2R and 2L (PCI Control-1 and 2)	113
4.13.3 Sample-4L (Normal/Practical Practice)	114
4.13.4 Sample-3R (200% Hanger Reinforcement and 50%	Flexure
Reinforcement)	114
4.13.5 Sample-3L (200% Flexure Reinforcement and 50%	Hange
Reinforcement)	115
4.14 Comparison of the Failure Modes	116
Chapter (5): NUMERICAL MODELING.	119
5.1 Introduction	119
5.1.1 Modeling Assumptions	119
5.2 Description of Elements	120
5.2.1 Concrete Element	120
5.2.2 Reinforcement Element	121
5.2.3 Steel Plates Element	121
5.3 Material Properties	122
5.3.1 Concrete	122
5.3.2 Reinforcement.	124
5.4 Numerical Values used for the Analysis (ANSYS Input Data)	124
5.4.1 Concrete Input Data	125
5.4.2 Reinforcement Input Data	127

5.4.3 Steel Plates Input Data	127
5.5 ANSYS Meshing	128
5.6 Modeling	132
5.7 Conditions of Boundary and Loads	132
5.8 Type and Procedure of Analysis	133
5.8.1 Saving the Load Configuration for the Current Load Step	135
Chapter (6): NUMERICAL ANALYSIS RESULTS	136
6.1 Introduction	136
6.2 FEM Test Result	136
6.2.1 Load-Deflection Relation	136
6.2.2 Crack Pattern	144
6.2.3 Load at Failure	149
Chapter (7): SUMMARY AND CONCLUSION	150
7.1 General	150
7.2 Conclusion	150
7.3 Recommendations for Future Work	151