

Ph. D. Thesis

Science (Chemistry)

Ahmed Ibrahim Mohamed Abdelgawad

2021

SYNTHESIS OF STRUCTURED LIPID AND IMPROVING ITS OXIDATIVE STABILITY USING POTENT ANTIOXIDANT EXTRACTED FROM OLIVE LEAVES

Thesis Submitted by

AHMED IBRAHIM MOHAMED ABD ELGAWAD

For

Ph.D. Degree of Science in Chemistry

To

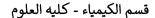
Department of Chemistry

Faculty of Science, Ain Shams University

2021

تحضير إحدى الليبيدات المعدلة وتحسين ثباتها ضد التأكسد بإستخدام إحدى مضادات الأكسدة المستخلصة من ورق الزيتون

رساله مقدمه


من

أحمد إبراهيم محمد عبدالجواد

للحصول على درجة دكتوراه الفلسفة فى العلوم تخصص الكيمياء

> قسم الكيمياء - كلية العلوم جامعة عين شمس ٢٠٢١

SYNTHESIS OF STRUCTURED LIPID AND IMPROVING ITS OXIDATIVE STABILITY USING POTENT ANTIOXIDANT EXTRACTED FROM OLIVE LEAVES

Thesis Submitted by

AHMED IBRAHIM MOHAMED ABD ELGAWAD

For the requirement of Ph.D. Degree of Science in Chemistry

Prof. Dr. Wael Sayed Ibrahim Abou-Elmagd

Professor of Organic chemistry, Chemistry Department, Faculty of Science
Ain Shams University

Prof. Dr. Mounir Mohamed Mohamed Eid

Chief Researcher in Fats and Oils Technology Research Department Food Technology Research Institute, Agricultural Research Center

Dr. Mohsen Mohamed Kamal Abou-El-Regal

Assistant Professor of Organic chemistry, Chemistry Department
Faculty of Science, Ain Shams University

To

Department of Chemistry

Faculty of Science, Ain Shams University

2021

SPECIAL DEDICATION

This thesis is dedicated to my father and Mother

Who supported me with everything they have and for their faith in me and allowing me to be as ambitious as I want.

And

My brother Ibrahim and my sisters

for their support and encouragement

Acknowledgment

I would like to gratefully and sincerely thank my supervisors Prof. Dr. Wael Abou-Elmagd, Prof. Dr. Mounir M. Eid and Assistant Prof. Mohsen Abou-Elregal for their guidance, abundantly helpful and offered invaluable assistance, support, guidance, understanding, and patience during my Ph.D. studies.

In fact, their mentorship was paramount in providing a well-rounded experience consistent with my long-term career goals.

I would like to thank Novozymes A/S (Bagsvaerd, Denmark) for the kind donation of Lipozyme TL 100L, NovoCor ADL, and Novozyme435®.

I thank my parents for their faith in me and allowing me to be as ambitious as I want. It was under their watchful eye that I gained so much drive and an ability to tackle challenges head on. I also thank my brother, Ibrahim, and my sisters. They provided me with unending encouragement and support.

Table of Contents

Acknowledgment	
List of Abbreviations	VI
List of Figures	VIII
List of Tables	X
List of Schemes	XI
Abstract	X
Summary	I
Chapter I: Literature Review	22
1. Introduction	1
1.2. Literature Review	5
1.2.1. Structured Lipids (SLs)	5
1.2.2. Oxidative Stability	8
1.2.3. Lipases	9
1.2.4. Economical study of lipases	14
1.2.5. Lipase Immobilization	15
1.2.6. Acyl Donor	16
1.2.7. Reaction Media	18
1.2.8. Reaction Temperature	20
1.2.9. Olive Leaves	20
1.2.10. Sterols and Their Esters	21
1.2.11. Antioxidant Compounds	23
1.2.12. Antioxidants In Bulk Lipids	24

Chapter II: Materials and Methods22
2. Materials and Methods28
2.1. Materials28
2.2. Chemicals28
2.3. Apparatus29
2.4. Extraction of Potent Antioxidants from Olive Leaves Powder (OLP)
2.4.1. Plant Materials30
2.4.2. Determination Of Phenols Content in Olive Leave Extract By HPLC
2.5. Fatty Acids Composition Analysis 32
2.6. Lipase Immobilization Process33
2.7. Enzymatic Incorporation of Ferulic Acid with Vegetable Oils
2.7.1. Biocatalytic Reaction Conditions34
2.7.2. Mass Analysis of Feruloylated Acylglycerols35
2.8. Free Radical Scavenging Analysis36
Part One: Biocatalysis Synthesis of formulated Palm Stearin (FPS)38
3.1. Estimation of Olive Leaves Phenol Content38
3.2. Fatty Acids Profile of Vegetable Oils39
3.3. Feruloylated Palm Stearin Analysis39
3.3.1. Effect Of Lipase Systems on Feruloylated Species Production
3.3.2. Free Radical Scavenging Study47

Part Two: Biocatalytic Synthesis of Feruloylated Linseed and	
Canola Oils (FLS and FCO)	.49
3.4. Feruloylated Linseed and Canola Oils (FLS and FCO)	.49
3.4.1. Feruloylated Acylglycerols	. 51
3.4.2. Steryl Derivatives	. 60
3.4.3. The Influence of Solvent-Free Media (SFS)	. 77
3.4.4. The Influence of Silica as Lipase Immobilizer	. 77
3.5. The Free-Radical Scavenging Activity Studies	. 79
4. Conclusion	. 85
Supplementary Information	. 88
References1	L21

List of Abbreviations

A.A. Antioxidant activity

ADL NovoCor ADL

ALA Alpha linolenic acid; C18:3 n-3

BPI The relative base peak ion chromatogram

CO Canola oil

DPPH 2,2-Diphenyl-1-picrylhydrazyl radical

FA Ferulic acid

FAGs Feruloylated acylglycerols

FCO Feruloylated canola oil

FFAs Free fatty acids Feruloylated structured lipids

FLS Feruloylated linseed oil

FPS Feruloylated palm stearin

FSLs Feruloylated structured lipids

LA Linoleic acid; C18:2 n-6

LCSFA Long chain saturated fatty acid

LCUFA Long chain unsaturated fatty acid

LS Linseed oil

N435 Novozyme435[®]

OA Oleic acid; C18:1 n-9

PA Palmitic acid; C16:0

PS Palm stearin

SFS Solvent free system reaction

TAGs Triacylglycerols

TLL Lipozyme TL 100L

List of Figures

Figure 1. Catalytic mechanism of CALB showing the existence an	10
acylation and a deacylation step (Anderson et al., 1998). The letters in	
the square boxes refer to the two substrates (A, B), the two reaction	
products (P,Q) and the free and covalently modified enzyme species	
(E and E*, respectively).	
Figure 2. The catalytic mechanism of lipase-catalyzed hydrolysis	13
reaction, displaying the residues of CALA forming the active site and	
the oxyanion hole (Monteiro et al., 2020).	
Figure 3. chemical structure of plant sterols.	21
Figure 4. Distribution of antioxidants (A and B) in bulk oil and (C) in	25
oil-in-water emulsion according to interfacial phenomena and the	
polar paradox (Chaiyasit et al., 2007).	
Figure 5. Proposed scheme of phenolic compounds distribution in	27
emulsified system according to cut-off theory (LAGUERRE et al. 2009).	
Figure 6. Schematic procedures of potent antioxidants extraction	31
from olive leaves.	
Figure 7. Time course for DPPH inhibition of PS and the FPS from all	48
lipase systems. The number (1) added to any lipase symbol system	
means 1mmole free glycerol was added to the reaction media;	
otherwise, no free glycerol added.	
Figure 8. ESI ⁺ -MS total scan of steryl fatty acid esters produced in FLS	61

and FCO.

Figure 9. ESI*-MS total scan of steryl ferulates produced in FLS and		
FCO.		
Figure 10. The chemical structure of enzymatically synthesized steryl		
derivatives and their molecular weight.		
Figure 11. the steryl fatty acid esters in FLS and FCO that produced at		
different reaction conditions.		
Figure 12. Antioxidant activity of the produced FLS and FCO.	81	
Figure 13. Antioxidant activity of olive leave extract, raw linseed and	84	
canola oils.		
S 1 . Mass fragmentations the produced nineteen feruloylated	88-104	
compounds.		
S 2 . the antioxidant activity of LS and FLS. (0) represents to no glycerol	105-107	
added, (1 and 2) represents to 1 and 2 mmole free glycerol added. A,		
B, and C grafs represented individual lipase systems. D, E, and F grafs		
represented combi-lipase systems.		
S 3. the antioxidant activity of CO and FCO. (0) represents to no	108-110	
glycerol added, (1 and 2) represents to 1 and 2 mmole free glycerol		
added. I, II, and III grafs represents individual lipase systems. IV, V,		
and VI grafs represents combi-lipase systems.		
S 4 : ESI ⁺ -MS total scan of steryl fatty acid esters of FLS.	111-113	
S 5 : ESI ⁺ -MS total scan of steryl fatty acid esters of FCO.	113-115	
S 6 : ESI ⁺ -MS total scan of steryl ferulates of FCO.		
S 7 : ESI*-MS total scan of steryl ferulates of FLS.	118-120	

List of Tables

Table1. Extraction condition of OLP.	
Table2. The estimated quantity of main olive leaves phenols in	38
grams per Kg of solid extract.	
Table 3. Fatty acid composition, acidity, and peroxide value of LS,	39
CO, and PS.	
Table 4. ESI*-MS-MS fragmentation of feruloylated acylglycerols.	41-42
Table 5. Distribution % of feruloylated components species of	43
feruloylated palm stearin.	
Table 6. Distribution % of feruloylated components from G-II, -III,	44
and IV of FPS.	
Table 7 . Distribution% of FAG species of FLS and FCO.	52-55
Table 8: Distribution % of feruloyl acylglycerols of FLS.	56-57
Table 9: Distribution % of feruloyl acylglycerols of FCO.	58-59
Table 10 : Distribution % of steryl fatty acid esters of FLS.	65-665
Table 11 : Distribution % of steryl fatty acid esters of FCO.	676-68
Table 12 : Distribution % of steryl ferulates of FLS and FCO.	69-70