

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Public Works

Railway Inspection using Digital Transformation Techniques

A Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering (Public Works)

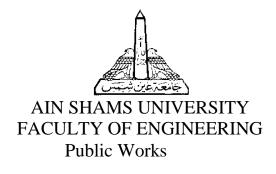
By Eman Abd El–Hameed Saved

Bachelor of Science in Civil Engineering (Public Works) Faculty of Engineering, Ain Shams University, 2014

Supervised By **Dr. Hany Sobhy Riad**

Associate Professor of Railway Engineering, Public Works Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt

Dr. Haytham Nour El-din Zohny


Associate Professor of Railway Engineering, Public Works Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt

Dr. Mohamed Elhabiby

Associate Professor of Surveying, Public Works Department,

Faculty of Engineering, Ain Shams University, Cairo, Egypt

Cairo - (2021)

Railway Inspection using Digital Transformation Techniques

By

Eman Abd El-Hameed Sayed

Bachelor of Science in Civil Engineering (Public Works) Faculty of Engineering, Ain Shams University, 2014

Examiners' Committee

Name and Affiliation	Signature
Prof. Ibrahim Fathy Shaker	
Public Works Department, Ain Shams University	
Prof. Ibrahim Mabrouk Ibrahim	•••••
Public Works Department, Al-Azhar University	
Dr. Hany Sobhy Riad	•••••
Public Works Department, Ain Shams University	
Dr. Mohamed Elhabiby	
Public Works Department, Ain Shams University	

Date: 15/4/2021

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Civil Engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Eman Abd El-Hameed Saye	d
Signatur	e

Date:24 May 2021

Researcher Data

Name : Eman Abd El-Hameed Sayed

Date of birth : 17 / 5 / 1992

Place of birth : Cairo, Egypt

Last academic degree : Bachelor of Science in Civil Engineering

Field of specialization : Public Works - Railway Engineering

University issued the degree : Ain Shams University

Date of issued degree : June–2014

Current job : Technical Team Lead, Digital

Transformation projects

Thesis Summery

Railway track inspection is a critical task in railway maintenance operations. It is periodically done for preventing hazards that can have significant legal and financial consequences. Inspection is usually operated manually by trained human operators walking along the railway track, searching for visual anomalies, or by using traditional surveying techniques. This is time-consuming, not accurate, and inefficient.

These traditional methods of inspection cost a lot of work hours and effort from both engineers and technicians, which can be saved by using digital techniques non-contact systems such as Terrestrial laser scanning. Terrestrial laser scanners can provide complete digitization for the environment surrounding the Railways right of way and tracks. Moreover, they are also widely applied for rail track surveys, clearance measurements, infrastructure reconstruction, tunnel mapping and much more.

The effectiveness of rail inspection depends on the efficiency and accuracy of the inspection method used and the necessary equipment. It also depends on the knowledge, skill, ability, and experience of inspectors.

This thesis proposes a complete solution for railway non-contact inspection using high definition (HD) phase shift (PS) static terrestrial laser scanning (TLS). The proposed solution can help in doing fast and immersive data acquisition and data analytics for inspection. The solution will help in monitoring the tracks and their supporting mechanisms. Also, it will use and rely on the in-depth data analysis from the change detection between two scans at different epochs to detect the rate of change during this period.

The methodology applied in this research:

The proposed method of railway inspection applying the digital transformation concept using the terrestrial laser scanning (TLS) to get accurate Inspection data for railways environment which lead to powerful and ease Asset management is structured in 3 phases:

Laser Scanning data Acquisition with accurate planning for scanner location and relative target's locations

Laser Scanning data processing which includes filtration and registration

Laser Scanning data comparison and verification with standard cross section of rail and with another absolute data from total station to ensure the accuracy

The thesis consists of seven chapters

Chapter 1 (Introduction)

This chapter depicts the research problem definition, objectives, methodology, scope of this thesis and contents.

Chapter 2 (Literature review)

This chapter presents the essential background knowledge related to this thesis.

Chapter 3 (Review for maintenance)

In this chapter, Various maintenance strategies available in railway industry were outlined

Chapter 4 (Review for inspection techniques)

In this chapter, Various inspection techniques available in railway industry were outlined.

Chapter 5 (Research Methodology)

This chapter describes the research approach, verification for the laser scanning technique accuracy.

Chapter 6 (Results and analysis)

This chapter presents the results for the comparison and verification done between the point cloud and the standard cross section of the rail, different point cloud epochs and the absolute data from total station inspection.

Chapter 7 (Conclusions and recommendations)

This chapter presents conclusions and recommendations completing the final issue in thesis methodology and fulfilling thesis objectives.

Keywords:

Railway, Maintenance, Inspection, laser scanning, point cloud.

Acknowledgment

Having the opportunity to write what I feel, it is the time I wrote my acknowledgments. First, I want to thank God for all the things He has blessed and is still blessing me with, without which I would not be able to pursue knowledge or even life.

Then, I would like to thank all people who have helped and inspired me during my M.Sc. study.

First and foremost, I would like to express my deepest gratitude to my principle supervisor **Dr. Hany Sobhy Riad**, Associate Professor of Railway Engineering, Faculty of Engineering, Ain Shams University. I sincerely appreciate his continuous support, generosity, and advice in both academic and personal way throughout my M.Sc. study. Under his guidance, I successfully overcame many difficulties and learned a lot.

I also wish to express my sincere thanks to my associate supervisor **Dr. Haytham Nour El–Din Zohny**, Associate Professor of Railway Engineering, Faculty of Engineering, Ain Shams University, for his help, guidance, encouragement, and valuable comments throughout my M.Sc. study. Thank you for all the times you have helped me and for the very valuable discussions we had.

My special thanks go to the third member of my supervisors' team **Dr. Mohamed Mamdouh El-habiby**, Associate Professor of Surveying, Faculty of Engineering, Ain Shams University. Despite his busy schedule, his door is always open for my questions, problems, and complaints. Without his help, guidance, and valuable comments, this work would not have been done.

Last but not least, I would like to dedicate this thesis to my lovely family. I am really grateful to them, the greatest **mother and father** all over the world, for their care, sacrifice, patient, and continuous encouragement. Without your effort, it would not be possible to complete this thesis.

Eman Abd El-Hameed

May 2021

Publications

1. "Railway Inspection using Non-Contact Non-Destructive Techniques"

International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-7, Issue-8, August 2020

Table of Contents

Statement	i	
Researcher Data	ii	
Thesis Summery	iii	
Acknowledgment	V	
Publications	vi	
Table of Contents	vii	
List of Figures	xi	
List of Tables	XV	
List of Abbreviations	xvi	
Chapter One (Introduction)	1	
1.1. Motivation		1
1.2. Problem definition		2
1.3. Thesis scope		3
1.4. Thesis objectives		3
1.5. Thesis methodology		4
1.6. Thesis contents		4
Chapter Two (Literature Review)	6	
2.1. Introduction		6
2.2 Overview of railway track maintenance system		6
2.3 Overview of railway inspection		8

Chapter Three (Review for maintenance)	15	
3.1. Introduction:		15
3.2. Rail manual maintenance:		16
3.2.1. Rail wear:		16
3.2.2. Corrugation wear:		19
3.2.3. Rail Maintenance		20
3.2.4. Wear of sleepers:		22
3.3. Adjustment of track gauge:		22
3.4. Tamping:		24
3.5. Ballast Injection (Stone blowing):		25
3.6. Checking the rail gaps:		25
3.7. Lubrication of rail fastening bolts		26
3.8. Mechanical Maintenance:		26
3.8.1. Track maintenance		26
3.8.2 Turnouts maintenance		28
Chapter Four (Review for inspection techniques)	30	
4.1. Introduction		30
4.2. Inspection Techniques		30
4.2.1. Visual Inspection		31
4.2.2.Manual Inspection (Track Geometry measurements):		31
4.2.3.NDT Techniques		37
4.2.4.Inspection using surveying tools (Total station):		37
4.2.5.Inspection using Camera (photogrammetry):		39
4.2.6.Inspection using Laser Scanning:		40
Chapter Five (Research Methodology)	42	
5.1. Introduction		42
5.2. case studies		42
5.2.1. Laser scanning data (A)		42
5.2.2. Laser scanning data (B)		44
5.3. Data Acquisition		45
5.3.1. Field Stations Planning		45
5.3.2. Sensor's specifications		46

5.3.3. Design the laser scanning positions	48
5.3.4. Targets types & positions	49
5.3.5. Data Acquisition	49
5.4. Data Processing	50
5.4.1. Data importing	51
5.4.2. Data processing & filtration	51
5.4.3. Data registration	52
5.3.4. Data meshing	54
5.4.5. Data comparison	54
5.4.6. Verification with absolute data from total station.	55
Chapter Six (Results and analysis) 56	
6.1 Introduction	56
6.2. 2D and 3D benchmarks design verification	58
6.2.1. Comparison between 2D point cloud and design cross section of rail	59
6.2.2. 3D comparison between 3D point cloud and 3D design cross section of rail	60
6.2.3. 3D comparison between two different epochs of 3D point cloud	61
6.3. Verification with absolute data from TLS	65
6.3.1. Laser scanning data	65
6.3.2. Total station data	70
Chapter Seven (Conclusions and Recommendations)75	
7.1 General	75
7.2 Conclusions	75
7.3 Recommendations	77
7.4. Further work	77
7.4.1. Extra inspection data extraction:	77
7.4.2. Development of data acquisition:	81

References	82
شكر	85
ملخص رسالة الماجستير	87
تعريف بمقدم الرسالة	88
الموافقة على المنح	90