

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Comparison between Transabdominal and Transvaginal Sonographic Assessment of Lower Uterine Segment at Term in Women with Previous Cesarean Delivery

A Thesis

Submitted for partial fulfillment of Master degree in Obstetrics & Gynecology

By

Mahmoud Mohammed El Masry Abd Allah

M.B.B.Ch, Faculty of Medicine – Minia University (2012) Resident of Obstetrics & Gynecology, Beni Mazar General Hospital

Under Supervision of

Prof. Dr. Helmy Motawea El Sayed

Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

Dr. Alaa Sayed Hassanin

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2021

First and foremost, I feel always indebted to Allah, the MostBeneficent and Merciful, Who gave me the strength to accomplish this work,

My deepest gratitude to my supervisor, Prof. Dr. Helmy Motawea El Sayed, Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his valuable guidance and expert supervision, in addition to his great deal of support and encouragement. I really have the honor to complete this work under his supervision.

I must express my deepest thanks to myDr. Alaa Sayed Hassanin, Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University for guiding me throughout this work and for granting me much of her time. I greatly appreciate her efforts.

Special thanks to my **Parents**, my **Wife** and all my **Family** members for their continuous encouragement, enduring me and standing by me.

Mahmoud Mohammed El Masry Abd Allah

List of Contents

Subject P	age No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	4
Review of Literature	
Cesarean Section	5
Complications of cesarean section	25
Role of Ultrasound in assessment of Cesarean Section Scar	45
Patients and Methods	55
Results	63
Discussion	70
Summary	79
Conclusions	83
References	85
Arabic Summary	

List of Abbreviations

Abbr.	Full-term				
ACOG	American Collage of Obstetricians and				
ACOG	Gynecologists				
CS	Cesarean section				
CSD	Cesarean scar defect				
IUS	Lower uterine segment				
SSI	Surgical site infection				
VTE	Venous thromboembolism				
MEWC	Maternal early warning criteria				
MEOWS	Maternal early obstetric warning system				
MFMU	Maternal fetal medicine unit				
EDD	Expected date of delivery				
GA	Gestational age				
MRI	Magnetic Resonance imaging				
SD	Standard deviation				
SIS	Saline infusion sonohysterography				
ERCS	Elective repeated cesarean section				
PRCD	Planned repeated cesaerean delivery				
TOLAC	Trial of labor after cesaerean section				
TAUS	Transabdominal ultrasonography				
TVUS	Transvaginal ultrasonography.				
VBAC	Vaginal birth after cesarean section				
HSG	Hysterosalpingography				
WHO	World Health Organization				

List of Tables

Table No.	Title	Page No.
Table (1):	Descriptive data of population	63
Table (2):	Comparison between the a intraoperative measurements and of TVS plus TAS in all the study of	these
Table (3):	Comparison between TVS and regarding to sensitivity and specific	
Table (4):	Comparison between TVS and regarding to sensitivity and specific	
Table (5):	Comparison between TVS and regarding to sensitivity and specific	
Table (6):	Receiver operating characteristics for prediction of scar dehiscence transvaginal ultrasound measureme	using
Table (7):	Receiver operating characteristics for prediction of scar dehiscence transabdominal ultrasound measurer	using
Table (8):	Correlation between inter-de- interval and actual measurement lower uterine segment thickness	nt of

List of Figures

Figure No	o. Title	Page No.
Figure (1):	Incisions for caesarean section	5
Figure (2):	(a) The caesarean scar defect (CS) contact with the bladder was visual by transvaginal ultrasound (TV) examination	lized VUS)
Figure (3):	Cesarean scar defect, or niche, a site of previous cesarean del hysterotomy	ivery
Figure (4):	Hysteroscopic view of a cesarean defect. Note the outpouching into anterior lower uterine segment	o the
Figure (5):	Ultrasonic view of a cesarean scar de	efect 37
Figure (6):	Laparoscopic view of cesarean defect	
Figure (7):	Laparoscopic view with cervical di	lator 40
Figure (8):	Bladder dissection	40
Figure (9):	Use of a cervical dilator	41
Figure (10):	Excised cesarean scar defect	41
Figure (11):	Laparoscopic view following repair	c 42
Figure (12):	Views following repair of cesarean defect	
Figure (13):	Cesarean scar defect	46

Figure (14):	A 35-year-old woman underwent hysterosalpingography for infertility after a previous cesarean delivery CSD is detected as a leakage of contrast from endometrial cavity into a defect of the myometrium at the location of the previous C-section.	47
Figure (15):	A hysterosalpingography	49
Figure (16):	A 40-year-old woman underwent to MR for abnormal uterine bleeding. CSD is detected on T2WI as a myometrium defect with apex pointing anteriorly, located at the anterior isthmus	49
Figure (17):	CSD classification and calculation of remaining myometrium.	50
Figure (18):	Anteverted uterus with white echogenic line extending from the uterine cavity to the edge of the myometrium anteriorly	52
Figure (19):	Retroverted uterus with intact CS	53
Figure (20):	The probe is not within the anterior fornix providing a limited view of the CS	54
Figure (21):	Receiver operating characteristics curve for prediction of scar dehiscence using transvaginal ultrasound measurement	67
Figure (22):	Receiver operating characteristics curve for prediction of scar dehiscence using transabdominal ultrasound measurement	68

List	of	Figures

Figure (23): Correlat		on	between		inter-deliv	ery	
	interval	and	actual	me	asurement	of	
	lower ute	erine s	segment	thic	kness		69

Introduction

Paesarean section (CS) rates have increased over recent years and according to data from 150 countries, current rates range from 6% to 27.2%(*Betra'n et al.*, 2016). Accordingly, the number of CS complications has increased(*Gregory et al.*, 2012).

Among early complications postpartum haemorrhage, obstetric hysterectomy due to uterine rupture or atony, urological complications, thromboembolic complications and amniotic fluid embolism may occur (*Gregory et al., 2012*).

Late complications after CS include abdominal pain caused by adhesions, caesarean scar, endometriosis, ectopic pregnancy, caesarean scar defect (CSD), abnormal placenta implantation and even mortality (*Sholapurkar*, 2018).

First described in 1995 following examinations of myometrium samples after hysterectomy in patients who had undergone CS, a cesarean scar defect (CSD) may form at the site of hysterotomy on the anterior wall of the uterine isthmus(*Morris*, 1995).

Improper healing of the caesarean incision leads to thinning of the anterior uterine wall, which creates an indentation and fluid-filled pouch at the CS site (*Bij et al.*, 2011).

The complication is also known as uterine scar defect, caesarean scar syndrome, diverticulum, sacculation, isthmocele, scar pouch or niche(*Dosedla and Calda*, 2017).

The type of surgical technique used for uterine closure has been proposed as an important factor in the formation of CSD (*Sholapurkar*, 2018).

Other factors such as prolonged labour, cervical dilatation >5cm before CS, oxytocin, retroverted uterus, low incision of the uterus have also been suggested as being responsible for the abnormal healing of the caesarean scar(*Vikhareva Osser and Valentin*, 2010).

The CSD may be asymptomatic or manifest with clinical symptoms including metrorrhagia (64%), dysmenorrhea (53%), chronic pelvic pain (40%), infertility and dyspareunia (18%)(*Wang et al.*, 2009).

CSD may expand and lead to scar dehiscence or uterine rupture in a subsequent pregnancy as well as result in scar pregnancies and abnormal placentae(*Donnez et al.*, 2017).

Ultrasound examination with the possible use of saline infused sonohysterography has been used in the diagnosis of CSD(*Uhar et al.*, 2015).

One classification system for CSD was based on the shape of the niche detected from ultrasound findings (*Bij et al.*, 2011).

The niche was categorized according to its shape as follows: triangle, semicircle, rectangle, circle, droplet, inclusion cysts. Using this system, investigators found semicircular and triangular niches were the most common of the six shapes (*Bij et al.*, 2011).

Although, there are no current guidelines for the management of CSD, this study will compare between transabdominal and transvaginal ultrasound in assessment of the LUS thickness at term pregnancy, in comparison with manual caliper measurements at cesarean delivery and find out predictive value of LUS thickness measurement in assessing integrity of LUS in women with previous cesarean delivery.