

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Assessment of left atrial function in ischemic patients before and after cardiac rehabilitation using speckle tracking

Chesis

Submitted for Partial Fulfillment of Master Degree In Cardiology

By

Salah El-din Nemr Ali Alijla

M.B.B.Ch.

Under supervision of

Prof. Dr. Khaled Mohamed Said Othman

Professor of cardiology - Cardiology department Faculity of medicine - Ain Shams University

Dr. Ahmed Ibrahim El Desoky

Lecturer of Cardiology – Cardiology department Faculty of Medicine – Ain Shams University

> Cardiology Department Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Khaled**Mohamed Said Othman, Professor of Cardiology Cardiology department - Faculty of Medicine- Ain Shams
University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Ahmed Ibrahim & Desoky**, Lecturer of Cardiology – Cardiology department, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Salah El-din Nemr Ali Alijla

List of Contents

Subject	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	
Introduction	
Aim of the study	
Review of Literature	
Acute myocardial infarction	5
Cardiovascular disease and cardiac rehabilita	
Left atrium function assessment by	
physiological and clinical implication	
Patients and Methods	
Results	58
Discussion	83
Limitations	88
Summary	89
Conclusion	91
Recommendation	92
References	93
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Baseline demographic and risk factors	58
Table (2):	ECG findings among the patients	60
Table (3):	Revascularizations findings among the patients	60
Table (4):	Comparing study parameters before and after CR	program62
Table (5):	Echo parameter before and after the study	67
Table (6):	Comparison of other ECHO parameters before CR	
Table (7):	Other Echo parameters of the study (assessme atrial function by pulsed wave Doppler)	
Table (8):	Comparison of Mean and SD of LA din volumes, peak atrial longitudinal strain and (IQR) of systolic strain rate by speckle tracking before and after cardiac rehabilitation	median imaging

List of Figures

Figure N	No. $Title$	Page .	No.
Figure (1):	Components of cardiac rehabilitation		13
Figure (2):	Physiological beneficial effect of exercise tr heart failure patients	raining in	
Figure (3):	Measurement of left atrium antero-posterior dia B-mode echocardiography from the parasternal view	long axis	27
Figure (4):	Measurement of left atrium antero-posterior diamemode echocardiography from the parasternal view.	long axis	28
Figure (5):	Maximum left atrium volume measured at enusing Simpson's modified method from the chamber view	apical 4-	32
Figure (6):	Minimum left atrium volume measured at end-dia: Simpson's modified method from the apical 4-chan	_	32
Figure (7):	PreA left atrium volume measured in middiast Simpson's modified method from the apical 4 view	l-chamber	33
Figure (8):	Transmitral flow assessment by pulsed wave Do		
Figure (9):	Normal left atrial strain and strain rate profile		
Figure (10):	Segmental traces of LA strain and average strain dashed trace). Yellow arrow indicates peak strain a	•	45
Figure (11):	Illustration of longitudinal peak systolic stragenerated from A3C view of patient no.14		53
Figure (12):	Illustration of strain rate curve generated from a of patient no. 18		54
Figure (13):	Sex distribution among the patients		
Figure (14):	Risk factors distribution among the patients		
Figure (15):	Revascularizations findings among the patients.		
Figure (16):	Bar chart comparing resting HR before and after		
Figure (17):	Bar chart comparing maximum achieved HR in Bruce test before and after CR		64
Figure (18):	Bar chart comparing HR reserve before and afte		
Figure (19):	Bar chart comparing METs before and after CR		
Figure (20):	Bar chart comparing peak EF by echo before the study	and after	

List of Figures (cont...)

Figure N	No. Title Page N	٧ o .
Figure (21):	Bar chart comparing the differences between echo WMSI parameter before and after CR	69
Figure (22):	Bar chart comparing the different between LVEDD and LVESD echo parameter before and after CR	70
Figure (23):	Bar chart comparing the different between LVEDV and LVESV before and after CR	71
Figure (24):	The same percentage before and after CR regarding LV wall thickness among the patients.	73
Figure (25):	Diastolic dysfunction among the patients before and after CR	74
Figure (26):	Degree of MR among the patients before and after CR	75
Figure (27):	Left atrial assessment by pulsed wave Doppler transmitral flow (m/s) before and after CR among the patients	77
Figure (28):	MV deceleration time (m/s) before and after CR among the patients	77
Figure (29):	Comparison of LA dimensions before and after CR	80
Figure (30):	Comparison of LA volumes before and after CR	80
Figure (31):	Comparison of PALS before and after CR	81
Figure (32):	Comparison of peak atrial systolic strain rate before and after CR	82

List of Abbreviations

Abb. Full term
Abb. Full term

AF Atrial fibrillation

AMI Acute myocardial infarction

AP Antero-posterior

AR Aortic regurgitation

CABG Coronary artery bypasses grafting

CCS Chronic coronary syndrome

CHD Coronary heart disease

CI Confidence interval

CR Cardiac rehabilitation

cTn Cardiac troponin

DES Drug-eluting stents

ECG Electrocardiogram

GE General electric

HIIT High intensity interval training

HR Heart rate

HRR Heart rate reserve

LA Left atrium

LAD Left anterior descending artery

LAV LA volume

LAVI Left atrial volume index

LAVmax Maximum LA volume

LAVmin Minimum LA volume

List of Abbreviations (cont...)

LDL Low-density lipoprotein

LV Left ventricular

METs Metabolic equivalents

MR Mitral regurgitation

MRI Magnetic resonance imaging

NYHA New york heart association

PACS Peak atrial contraction strain

PALS Peak atrial longitudinal strain

PCI Percutaneous coronary intervention

RHR Resting heart rate

ROI Region of interest

RR Relative risk

SPSS Statistical package for social science

SR Strain rate

STE Speckle tracking echocardiography

STEMI ST-elevation myocardial infarction

SWMA Segmental wall motion abnormalities

TR Tricuspid regurgitation

VF Ventricular fibrillation

VI Volume index

ε Left atrial strain

 ϵ' The strain rate

Introduction

Coronary heart disease (CHD) is one of the most common forms of heart disease. It affects the heart by restricting or blocking the flow of blood around it. This can lead to anginal pain or myocardial infarction. Exercise-based cardiac rehabilitation aims to restore people with CHD to health through combination of exercise with education and psychological support ⁽¹⁾.

Cardiac rehabilitation is a medically supervised program designed to improve cardiovascular health in patient with myocardial infarction, heart failure, angioplasty or heart surgery ⁽²⁾.

The left atrium (LA) is not only a simple passive transport chamber. It is highly dynamic and responds to stretch with the secretion of atrial natriuretic peptides. The counterbalance of natriuresis, vasodilatation, and inhibition of the sympathetic and renin–angiotensin–aldosterone systems allows partial restoration of fluid and haemodynamic balance ⁽³⁾.

LA function has been conventionally divided into three phases: first, as a reservoir, the LA stores pulmonary venous

return during left ventricular (LV) contraction and isovolumetric relaxation. Secondly, as a conduit, the LA transfers blood passively into the LV. Thirdly, the LA actively contracts during the final phase of diastole and contributes between 15 and 30% of LV stroke volume. As a continuum of the LV, especially during diastole, its size and function are very much influenced by the compliance of the LV⁽⁴⁾.

The LA plays an important role in the development of many heart diseases, and its size and function are closely correlated with various cardiovascular events. The mitral valve ring moves downward during LV systole, and the LA is directly affected by LV pressure during the entire diastole. LV systolic and diastolic functions are both impaired in patients with ischemic heart disease. The reservoir function of the LA is impaired because the mitral valve ring is not completely downcast during systole, and the LA contraction capacity can also be affected by LV diastolic dysfunction. Therefore, the clinical relevance of LA function is increasingly acknowledged ⁽⁵⁾.

Speckle tracking has recently emerged as quantitative ultrasound technique for accurately evaluating myocardial

function by analyzing the motion of speckles identified on routine 2-dimentional sonograms. It provides non-doppler, angle independent and objective quantification of myocardial deformation.

Speckle tracking echocardiography is based on an analysis of spatial dislocation (referred to as tracking) of speckles (defined as spots generated by the interaction between the ultrasound beam and myocardial fibers) on routine 2-dimentional sonograms ⁽⁶⁾.

By tracking the displacement of speckles during the cardiac cycle speckle –tracking echocardiography allow semi-automated elaboration of myocardial deformation. Although this new technique was introduced for exclusive analysis of LV function, several studies have recently extended its applicability to other cardiac chambers, such as the left atrium and right ventricle ⁽⁷⁾.

In the present study, we use speckle tracking echocardiography to evaluate the LA strain and strain rates in patients with ischemic heart disease ⁽⁸⁾.