

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Design and Production Engineering

Solar Selective Coating Design and Implementation *via* Sol-Gel Technique

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science in Mechanical Engineering

(Design and Production Engineering)

by

Fatma Taha Abdollah Sabrah

Bachelor of Science in Mechanical Engineering Faculty of Engineering, Helwan University, 2012

Supervised By

Prof. Dr. Nahed El-Mahallawy

Prof. Dr. Madiha Shoeib

Cairo - (2021)

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Design and Production Department

Solar Selective Coating Design and Implementation *via* Sol-Gel Technique

by

Fatma Taha Abdollah Sabrah

Bachelor of Science in Mechanical Engineering Faculty of Engineering, Helwan University, 2012

Supervising Committee

Name and Affiliation	Signature
Prof. Dr. Nahed Abd El-Hamid El-Mahallawy Design and Production Engineering Department, Ain Shams University	
Prof. Dr. Madiha Ahmed Shoeib Surface Protection and Corrosion Control Department, Central Metallurgical Research and Development Institute (CMRDI)	

Date: -- / -- / 2021

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Design and Production Department

Solar Selective Coating Design and Implementation *via* Sol-Gel Technique

by

Fatma Taha Abdollah Sabrah

Bachelor of Science in Mechanical Engineering Faculty of Engineering, Helwan University, 2012

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Nahed Abd El-Hamid El-Mahallawy Design and Production Engineering Department, Ain Shams University	
Prof. Dr. Madiha Ahmed Shoeib Surface Protection and Corrosion Control Department, Central Metallurgical Research and Development Institute (CMRDI)	
Prof. Dr. Iman Salah El-Din El-Mahallawi Materials and Metallurgical Engineering Department, Cairo University	
Prof. Dr. Adel Khalil Hassan Khalil Mechanical Power Engineering Department, Cairo University	

Date: -- / -- / 2021

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Mechanical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Fatma Taha Abdollah Sabrah

S	ignatu	re
	• • • • • • • • • • • • • • • • • • • •	

Date: -- / -- / 2021

Researcher Data

Name : Fatma Taha Abdollah Sabrah

Date of birth : 1/2/1990

Place of birth : Cairo, Egypt

Last academic degree : Bachelor of Science

Field of specialization : Mechanical Engineering

University issued the degree : Helwan University

Date of issued degree : 2012

Thesis Summary

This thesis reports on the efforts made to research and develop solar selective coating, which is considered to be a key element of solar thermal collectors, in an attempt to highlight the importance of increasing knowledge in this field. This aim was accomplished by reading and discussing previous scientific publications relating to this field, and then choosing the solar selective coating composition and preparation method that seemed promising and preferable from several aspects, setting, and implementing a work plan, and subsequently, discussing and evaluating the findings that presented substantial conclusions served the aim of this thesis.

The present study investigates the effect of different process parameters on the optical properties of prepared solar selective surfaces made of stainless-steel sheets coated with CoCuMnO_x solar selective coating, which was prepared and applied through the sol-gel dip-coating method. This is in addition to investigating the inclusion of different mass fractions of different carbon allotropes in the CoCuMnO_x coating structure, besides attempts to apply carbon on top of the CoCuMnO_x selective surface. Furthermore, bare stainless-steel sheets were considered to be solar selective surfaces after processing the sheets by thermal exposure and roughening their surfaces. X-ray diffraction, Scanning Electron Microscope, and Energy-dispersive X-ray were the used analysis methods to identify the phase composition, topography, and elemental composition, respectively, of some featured samples.

The performed study revealed outstanding spectral characteristics for the roughened stainless-steel sheet coated with two layers of charcoal-CoCuMnO_x. A 5 wt.% of charcoal embedded in the structure of CoCuMnO_x managed to surpass the plain CoCuMnO_x solar selective coating with 7% higher spectral selectivity. Noting that the plain coating achieved an absorptivity of 0.906, an emissivity of 0.116, and 85% selectivity, while the developed version, which contained carbon, achieved an absorptivity of 0.964, an emissivity of 0.095, and 92% selectivity. In addition, it was found that annealing bare stainless-steel sheets with a surface roughness of 1.35 μm at 750 °C yielded a solar selective surface with an absorptivity of 0.953, an emissivity of 0.205, and 85.1% selectivity. Moreover, it was evidenced that the roughness degree of the substrate surface has a substantial potential to boost optical properties.

Keywords: Solar selective coating, Sol-gel, CoCuMnO_x, Carbon allotropes, C@SiO₂, Silica, optical properties, Surface roughness, Stainless-steel

Acknowledgment

First and foremost, praises and thanks to God, the Almighty, for His showers of blessings throughout my research work to complete the research successfully.

I would like to express my deep and sincere gratitude to my research supervisors, Prof. Nahed El-Mahallawy and Prof. Madiha Shoeib, for giving me the opportunity to do research and providing invaluable guidance throughout this research. Their vision, sincerity, and motivation have deeply inspired me. They have taught me the methodology to carry out the research and to present the research work as clearly as possible. It was a great privilege and honor to work and study under their guidance. I would also like to thank them for their continued empathy and kind-heartedness.

I am extremely grateful to my parents for their love, prayer, caring, and financial and molar support. They did even more than it takes to facilitate all the difficulties. I am very much thankful to my siblings, Safaa and Abdollah, for their love, prayer, and continuous support to complete this research work. I would like also to express my gratitude to my beloved friends, Eng. Asmaa Shaban and Dr. Amany Khaled, for their encouragement, valuable prayers, and the keen interest shown to take this study to the best end.

Table of Contents

			nts		
Li	st of i	Figures -	VII		
Li	st of	Tables -	XI		
Li	st of	Abbrevi	ations XII		
Li	st of	Symbols	3 XIV		
1	Cha	pter One	e: Introduction		
			tion		
	1.2	Chapter	rs' Outlines		
2	Cha	pter Two	o: Literature Reviewable energy		
	2.1	2.1 Sustainable energy			
	2.2	Solar irradiance			
	2.3 Solar thermal collectors				
		2.3.1	Concentrating collectors		
			2.3.1.1 Parabolic trough collector (PTC)		
			2.3.1.2 Parabolic dish reflector (PDR)		
			2.3.1.3 Linear Fresnel reflector (LFR)		
			2.3.1.4 Heliostat field collector (HFC)		
2.3.2 Non-concentrating collectors		Non-concentrating collectors 1			
			2.3.2.1 Evacuated tube collector (ETC) 1		
			2.3.2.2 Flat plate collector (FPC) 1		
	2.4	1			
	2.5	Spectrally selective coatings			
	2.6	Sol-gel	technique 1		
		2.6.1	Sol-gel derived solar selective coatings 1		
		2.6.2	Sol-gel derived coatings deposition methods 2		
	2.7				
	2.8				
3	Cha		ee: Experimental Work 2		
	3.1	Introdu	ction 2		
	3.2	2 Substrates preparation			
	3.3				
	3.4	Dip coa	ating process 3		
		3.4.1	Deposition of C1 3.		
		3.4.2	Deposition of C2 3		
		3.4.3	Deposition of C3 3		
		3.4.4	Deposition of C4 3		
	3.5				
	3.6 Characterization and Testing				
		3.6.1	Measurements of substrate surface roughness 3		
		3.6.2	Measurements of coat thickness 3		
		3.6.3	Measurements of absorptivity of the samples 4		

	3.6.4	Measurements of emissivity of the samples
	3.6.5	Surface characterization
Cha	apter Fou	r: Results and Discussion
4.1	Introdu	action
4.2	First gr	roup of samples with the CoCuMnO _x basic coating
	(gp. 1) 4.2.1	
	4.2.1	CoCuMnO _x on the optical properties of the tested
		samples
	4.2.2	Effect of altering the dipping/withdrawal rate
	7,2,2	(DWR) of the dip coating process on the optical
		properties of the tested samples
	4.2.3	Effect of number of CoCuMnO _x coating layers on
	1.2.5	the optical properties
	4.2.4	Effect of heat treatment at a higher annealing
		temperature on the optical properties
	4.2.5	The relation between the thickness of the coating
		and its optical properties
	4.2.6	Coating characterization
		4.2.6.1 X-ray diffraction analysis (XRD)
		4.2.6.2 Scanning electron microscope imaging
		4.2.0.2 (SEM)
		4.2.6.3 Energy dispersive X-Ray analysis (EDX)
		and elemental mapping
4.3		l group of samples with carbon-included coatings
1.5	(gp.II)	
	4.3.1	Effect of different mass fractions of different
		carbon allotropes on the solar absorptance of the
	4.2.2	C-CoCuMnO _x /C-CoCuMnO _x /SS samples
	4.3.2	Effect of different mass fractions of different
		carbon allotropes on the thermal emittance of the
	122	C-CoCuMnO _x /C-CoCuMnO _x /SS samples
	4.3.3	Effect of different mass fractions of different
		carbon allotropes on the spectral selectivity of the
	4.3.4	C-CoCuMnO _x /C-CoCuMnO _x /SS samples
	4.3.4	Effect of increasing the surface roughness of the stainless-steel substrate from 0.3 to 1.35 μm on
		the optical properties of carbon coatings
	4.3.5	Inspection of carbon coatings by XRD analysis
	4.3.6	Inspection of carbon coatings by SEM analysis
	4.3.7	Inspection of carbon coatings by SEW analysis
	4.3.8	Effect of applying top coating layers of silica and
		carbon @silica on the optical properties

		4.3.9	Effect of increasing surface roughness of the
			substrate on the optical properties of samples with
			different top coating layers
	4.2	4.3.10	Inspection of samples with top coatings by XRD
		4.3.10	analysis
	1.2	4.3.11	Inspection of samples with top coatings by SEM
		4.3.11	analysis
	1	4.3.12	Inspection of samples with top coatings by EDX
	4.3.12	analysis	
	4.4	Third s	amples group (gp. III)
		4.4.1	Effect of the increase in annealing temperature on
			the optical properties
		4.4.2	Effect of increasing surface roughness of bare
			stainless-steel sheets annealed at different
			temperatures on the optical properties
	4.5	Differe	ntiation between all the prepared samples
5	Con	clusions	and Future Work
	5.1	Conclu	sions
	5.2	Future	Recommendations
R	eferei	nces	

List of Figures

Figure 2.1 Solar Irradiance Spectrum
Figure 2.2 Schematic representation of the parabolic trough
collector and its main components
Figure 2.3 Schematic representation of the parabolic dish reflector
and its main components
Figure 2.4 Schematic representation of the linear Fresnel reflector
and its main components
Figure 2.5 Schematic representation of Heliostat field-central
receiver and its main components
Figure 2.6 Schematic representation of two types of evacuated
tube collectors and their main components; (a) U-tube ETC and,
(b) Heat-pipe ETC
Figure 2.7 Schematic representation of Flat plate collector and its
main components
Figure 2.8 The spectral power density of the solar radiation air
mass 1.5, the blackbody radiation at 300, 400, 500 and 600 °C and
the reflectance spectrum of an ideal selective absorbing material
Figure 2.9 Schematic illustration of how transparent and opaque
materials interact with sun rays
Figure 2.10 Schematic illustration of types of spectrally selective
coatings: (a) Intrinsic absorber, (b) Cermet absorber, (c) Textured
surface, (d) Semi-conductor absorber, (e) Multilayer absorber, (f)
Dielectric/ metal/ dielectric absorber
Figure 2.11 Schematic representation of the sol-gel process which
involves the following route: (monodispersed sol \rightarrow polymeric sol
\rightarrow gelation \rightarrow form gel)
Figure 2.12 Graphical representation of sol-gel derived solar
selective materials
Figure 3.1 Sand blasting machineFigure 3.2 Ultrasonic cleaner
Figure 3.3 (a) Co II acetate, (b) Cu II nitrate, and (c) Mn II acetate
Figure 3.4 The used hot plate magnetic stirrer and the precursor
solution of CoCuMnO _x coating during the hydrolysis
polymerization process
Figure 3.5 Laser particle size analyzer
Figure 3.6 The Tensile testing machine during the dip-coating
process
Figure 3.7 Samples after the dip-coating process
Figure 3.8 The samples during the heat treatment process and after
switching off the furnace
Figure 3.9 Final sample ready to be tested
6

Figure 3.10 Roughness meter
Figure 3.11 The used optical microscope and one of the images at
500X magnification depicted using it, indicating the measured
coating thickness
Figure 3.12 UV/VIS spectrometer and its chamber where the
samples were installed
Figure 3.13 FTIR spectrometer
Figure 3.14 SEM-EDX device during the inspection process
Figure 3.15 The used XRD device
Figure 4.1 Effect of different precursor concentrations, withdrawal
rates, and number of coating layers on Absorptivity
Figure 4.2 Effect of decreasing precursor concentration on
absorptivity for 1 cm/min DWR/single coating layer cases
Figure 4.3 Effect of different precursor concentrations, withdrawal
rates and number of coating layers on Emissivity
Figure 4.4 Effect of decreasing precursor concentration on
emissivity for 1 cm/min withdrawal rate/single coating layer cases
Figure 4.5 Effect of different precursor concentrations, withdrawal
rates and number of coating layers on Selectivity
Figure 4.6 Effect of the decrease of the precursor concentration on
selectivity for 1 cm/min withdrawal rate/single coating layer cases
Figure 4.7 Effect of annealing temperature on absorptivity at
different precursor concentrations
Figure 4.8 Effect of annealing temperature on emissivity at
different precursor concentrations
Figure 4.9 Effect of annealing temperature on selectivity at
different precursor concentrations
Figure 4.10 The relation between coating thickness and
absorptivity
Figure 4.11 The relation between coating thickness and emissivity
Figure 4.12 The relation between coating thickness and selectivity
Figure 4.13 XRD analysis of the optimum sample (Case 12)
Figure 4.14 XRD analysis of case 8
Figure 4.15 XRD analysis of case 25
Figure 4.16 XRD analysis of case 20
Figure 4.17 XRD analysis of case 27
Figure 4.18 SEM micrographs of case12 (a) an overview at 100X
(b) at 1000X (c) at 2000X (d) at 10000X
Figure 4.19 EDX analysis of case 12 of group I (Conc. \rightarrow MR/60,
DWR \rightarrow 1.5 cm/min, double-layered coating, and annealing temp.
\rightarrow 450 °C)