

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

"Accuracy of Intraoral Digital Radiography in Assessing Maxillary Sinus-Root Relationship Compared to CBCT"

Thesis

Submitted to Oral Medicine, Periodontology, Diagnosis and Radiology Department,

Faculty of Dentistry - Ain Shams University for Partial Fulfillment of the Requirements for Master's Degree in Oral and Maxillofacial Radiology.

By Esraa Ahmed Hassan

Demonstrator of Oral and Maxillofacial Radiology Faculty of Dentistry - Ain Shams University B.D.S., Ain Shams University- 2014

Supervisors

Dr. Walaa Mohamed Hamed

Assistant Professor of Oral and Maxillofacial Radiology Faculty of Dentistry - Ain Shams University

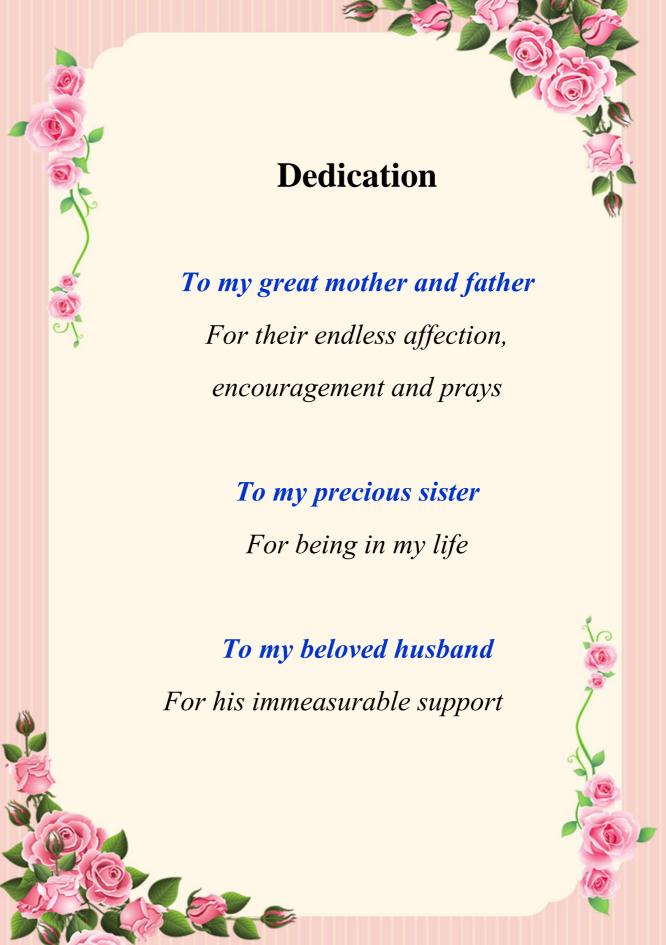
Dr. Fatma Mostafa El Badawy

Lecturer of Oral and Maxillofacial Radiology Faculty of Dentistry - Ain Shams University

Faculty of Dentistry, Ain Shams University

First of all, I would like to express my deep gratitude for ALLAH for his care and generosity throughout my life...

I would like to express my most sincere gratitude to my dear supervisors Dr. Walaa Mohamed Hamed and Dr. Fatma Mostafa El Badawy for their valuable guidance and great support.


Also, I would like to express my deepest gratitude to Dr. Kareem Samir, Assistant Lecturer of Oral and Maxillofacial Radiology, Faculty of Dentistry, Modern University for Technology and Information, for his extreme patience and great help in observation and statistical work.

I am very grateful to Dr. Amr Essam, Demonstrator of Oral and Maxillofacial Radiology, Faculty of Dentistry, Ain Shams University, for his great help in observation.

Special thanks to my dear friend Dr.Haneen Rafaat, Assistant Lecturer of Public Health, Faculty of Dentistry, Ain Shams University, for her endless support and valuable suggestions throughout this work.

I wish to extend my deep thanks to all staff members of Oral and Maxillofacial Radiology Department, Faculty of Dentistry, Ain Shams University especially Dr. Mary Medhat, Professor, and Dr. Raghdaa Abo El Kheir, Assistant Professor, for their great help and encouragement.

Esraa Ahmed Kassan

LIST OF CONTENTS

	Page
LIST OF ABBREVIATIONS	IV
LIST OF FIGURES	V
LIST OF TABLES	IX
INTRODUCTION AND REVIEW OF LITERATURE	1
AIM OF THE STUDY	33
MATERIALS AND METHODS	34
CASE PRESENTATION	44
RESULTS	48
DISCUSSION	65
SUMMARY	75
CONCLUSIONS	77
RECOMMENDATIONS	78
REFERENCES	79
APPENDICES	95
ARABIC SUMMARY	١

LIST OF ABBREVIATIONS

Abbreviation	Meaning
ADC	Analog to Digital Converter
СВСТ	Cone Beam Computed Tomography
CCD	Charged-couple-device
CMOS	Complementary metal oxide semiconductor
CT	Computed Tomography
MPR	Multiplanar Reconstruction
MS	Maxillary sinus
MSF	Maxillary sinus floor
PSP	Photostimulable phosphor plate
SPP	Storage phosphor plate
2D	Two-dimensional
3D	Three-dimensional

LIST OF FIGURES

Figure no.	Title	Page
1	Diagram of MS showing the shape, walls and development during the different growth stages.	2
2	A-D, The range of normal positions of the MSF relative to the premolar and molar teeth is shown in periapical images.	3
3	CT Coronal Cut showing the components of the ostiomeatal complex.	4
4	Classification of the topographic relationships of maxillary first molars with the MS on panoramic radiographs. A, B, and C represent classes 1, 2, and 3, respectively.	6
5	Diagram showing the vertical relationship between the inferior wall of the MS and the roots of the maxillary molars.	7
6	Diagram showing the vertical relationship between the MSF and the roots of maxillary molars and premolars on CBCT (B: buccal; P, palatal).	8
7	Diagram showing the relation between the roots of maxillary posterior teeth and MSF.	8
8	Cropped panoramic radiographs showing relation scores to the MSF from 0 -4.	9
9	Diagrams and its corresponding cross-sectional cuts of CBCT scan showing the vertical relationship of root apex and MSF.	10
10	Panoramic radiograph showing the superimposition of the roots of the maxillary posterior teeth, hard palate and the zygomatic process of maxilla on the MS.	12
11	Diagram showing that CCDs move photogenerated charge from pixel to pixel and convert it to voltage at an output node. CMOS imagers convert charge to voltage inside each pixel.	16

Figure no.	Title	Page
12	Diagram showing how the laser beam scans the exposed imaging plate to release the stored energy as visible light. Then the photomultiplier tube collects, amplifies, and converts the light to an electrical signal. The analog-to-digital converter converts the analog data to digital data.	18
13	Traced borders of the maxillary sinus volume in all three planes (coronal, sagittal, axial) of CBCT scan.	22
14	Axial and coronal cuts of CBCT scan showing polypoid mucosal thickening in the MS bilaterally.	23
15	Axial and coronal cuts of CBCT scan showing air fluid level in the right MS.	24
16	Axial and coronal cuts of CBCT scan showing fibrous dysplasia in the left MS.	25
17	(B-D) Sagittal, coronal and axial cuts of CBCT scan respectively showing the ability of CBCT to show a periapical lesion that periapical image (A) cannot show.	26
18	(B-C) Cropped reconstructed panoramic view, axial, coronal and sagittal cuts of CBCT scan respectively showing periapical lesions that periapical image (A) cannot show.	27
19	(A-C) Cropped axial, coronal and sagittal cuts of CBCT respectively showing a large periapical lesion that periapical radiograph (D) cannot show.	28
20	(A) Digital periapical radiograph not clearly showing the apical periodontitis related to the left second molar. (B-D) Sagittal, coronal and axial of a CBCT scan respectively clearly showing the apical periodontitis related to the left second molar with reactive soft tissue thickening.	29
21	(A-C) Axial.coronal and sagittal cuts of a CBCT scan showing no protrusion of the palatal root tip of the upper left second molar into the sinus. (D, E) panoramic and periapical images respectively showing the overprojection of the root onto the MSF.	31
22	i-CAT Next Generation CBCT machine.	36

Figure	Title	Dogo
no.	Tiue	Page
23	Evostyle periapical machine (RYCB-X/1 -Italy)	36
24	Vatech sensor	37
25	Upper molar sensor holder	37
26	MPR screen on i-cat vision viewer software: Axial, Coronal and Sagittal Cuts.	38
27	EZ Dent-i software showing list of patients with all the images acquired for the selected one.	39
28	Cropped digital periapical image showing: Score 1 (Blue arrow), Score 2 (Orange arrow) and Score 3 (White arrow).	40
29	Digital periapical images showing: A= Interruption of the sinus floor, B= Discontinuity of lamina dura and C= Upward bending of the sinus floor to envelop the root.	41
30	The observation sheet. R=Right, L=Left MB=Mesiobuccal root, DB=Distobuccal root, P=palatal root, 6=First molar, 7=Second molar, 8=Third molar).	42
31	Cropped coronal cuts of CBCT scan for the maxillary right molars.	44
32	Digital periapical image of the maxillary right molars	45
33	Cropped coronal cuts of CBCT scan for the maxillary left molars.	46
34	Digital periapical image of the maxillary left molars.	46
35	Interrater reliability between the observers upon CBCT images as a whole and in each score separately	-
		49
36	Interrater reliability between the observers upon digital periapical images as a whole and in each score separately	49
37	Intrarater reliability between the observers upon CBCT and digital periapical images as a whole and in each score separately.	50
38	Percentage of each of the three scores	51
39	The degree of agreement between the periapical images and CBCT as a whole and in each score separately	52

Figure no.	Title	Page
40	Percentage of incidence of each feature in the periapical images	55
41	Sensitivity, specificity, accuracy, false positive rate, positive and negative predictive values for each periapical feature separately and the combined features	56
42	Percentage of occurrence of each root outside the sinus (Score 1)	63
43	Percentage of occurrence of each root at the sinus floor (Score 2)	63
44	Percentage of occurrence of each root inside the sinus (Score 3)	64

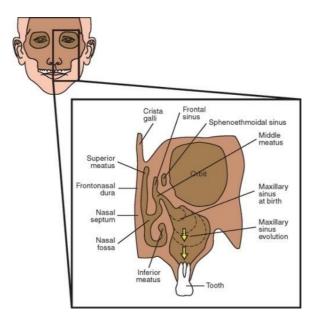
LIST OF TABLES

Table No.	Title	Page
1	Scoring of the relationship of the roots of the maxillary	
	right molars to the MSF using CBCT and digital	
	periapical images	45
2	Scoring of the relationship of the roots of the maxillary	
	left molars to the MSF using CBCT and digital	4-
	periapical images.	47
3	Frequency and percentage of each of the three scores	50
4	Frequency of agreement and disagreement between	50
	CBCT and periapical scores.	52
5	True and false positive and negative values of the	5 2
6	periapical readings compared to CBCT readings	53
0	Percentage of sensitivity, specificity and accuracy of	
	periapical imaging technique in assessing sinus-root relationship	53
7	Total count and percentage of incidence of each feature	55
′	separately and the combination of features in all	
	probabilities in the periapical images	54
8	True and false positive and negative values for each	54
	periapical feature separately and the combined features	55
9	Sensitivity, specificity, accuracy, false positive rate,	
	positive and negative predictive value for each	
	periapical feature separately and the combined features	56
10	The number and percentage of the roots intruding and	
	extruding the sinus in each gender and its P value.	58
11	The number and percentage of the roots intruding and	
	extruding the sinus in each side, each molar and each	
	type of root and their corresponding P values.	59
12	Frequency and percentage of occurrence of each root	
	outside the sinus (Score 1)	60
13	Frequency and percentage of occurrence of each root	
	at the sinus floor (Score 2)	61
14	Frequency and percentage of occurrence of each root	
	inside the sinus (Score 3)	62

INTRODUCTION AND REVIEW OF LITERATURE

♣ Maxillary sinus development and anatomy

The maxillary sinuses (*MS*) are one of the four paired sets of the paranasal sinuses and the first to develop in fetal life. In the second month intra-uterine, an invagination starts to form in the lateral wall of the nasal fossa in the middle meatus¹. By the third to fourth months intra-uterine, the sinus develops into a pouch and extends into the maxillary bone ².


At birth, it resembles a small sac, no more than 8 mm in length in the antero-posterior dimension³. Over time, these air-filled pyramid-shaped cavities bilaterally extend further laterally and inferiorly as the maxilla becomes more pneumatized⁴. When pneumatization involves the alveolar process, the cavity appears to develop around the roots of the maxillary teeth¹. The MS continues growing until eruption of the permanent teeth².

The adult sinus is variable in its extension, in half of the cases it extends into the alveolar process forming an alveolar recess. In these instances, the maxillary sinus floor (*MSF*) comes in close proximity to the roots of the maxillary posterior teeth. With the loss of the posterior teeth, the sinus can extend further inferiorly into the alveolar bone, even reaching the alveolar ridge in some cases⁵.

The roof of the MS forms the orbital floor which is a thin bone wall with the infraorbital neurovascular bundle in its center. The anterior wall of the sinus contacts the canine fossa of the maxilla, while the posterior wall separates the sinus from the contents of both the infratemporal and

1

pterygomaxillary fossae. The MSF is formed by the maxillary alveolar process and the hard palate⁵ (**Fig.1**).

Figure (1): *Diagram of MS showing the shape, walls and development during the different growth stages*⁶.

If the MS is extensively pneumatized, the MSF will appear to drape around the roots of the teeth or to be superimposed over them, giving the appearance of the roots penetrating the sinus. In these cases, the lamina dura of the maxillary posterior teeth may form a portion of the MSF¹ (**Fig.2**). The presence of radiopaque lines within the sinus may be folds or septa of cortical bone projecting from the walls and floor of the MS⁷.

MS communicates with the nasal cavity through a complex known as the ostiomeatal complex. This complex is a functional entity of the anterior ethmoid bone and it is the common pathway for drainage and ventilation of not only the MS, but also the frontal and anterior ethmoid sinuses⁸ (**Fig.3**).