

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

THE EFFECT OF SOME PLANT OILS ON ORGANS DYSFUNCTION INDUCED BY EXPOSURE TO CEMENT DUST IN RATS

Submitted By Marwa Ashry Hanfy Mahmoud

B.Sc. of Biochemistry and Nutrition, Faculty of Women for Arts, Science & Education,
Ain Shams University, 2002

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Basic Sciences Institute of Environmental Studies and Research Ain Shams University

APPROVAL SHEET

THE EFFECT OF SOME PLANT OILS ON ORGANS DYSFUNCTION INDUCED BY EXPOSURE TO

CEMENT DUST IN RATS

Submitted By

Marwa Ashry Hanfy Mahmoud

B.Sc. of Biochemistry and Nutrition, Faculty of Women for Arts, Science & Education, Ain

Shams University, 2002

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences
Department of Environmental Basic Sciences

This thesis was discussed and approved by:

The Committee Signature

1-Prof. Dr. Iman Mohamed El-Metwally Hussein

Prof. of Nutrition

Faculty of Women for Arts, Science & Education

Ain Shams University

2-Prof. Dr. Taha Abd El Azim Mohamed Abd El- Razek

Prof. of Environmental Analytical Chemistry, Department of Environmental Basic Sciences - Institute of Environmental Studies & Research Ain Shams University

3-Dr. Maha Mahmoud Mohamed

Associate Prof. of Biochemistry and Nutrition Faculty of Women for Arts, Science & Education Ain Shams University

4-Prof. Dr. Hanaa Hussein El-Sayed

Prof. of Environmental Studies for Nutrition Chemistry and Metabolism Nutrition Chemistry and Metabolism Department National Nutrition Institute

2021

THE EFFECT OF SOME PLANT OILS ON ORGANS DYSFUNCTION INDUCED BY EXPOSURE TO CEMENT DUST IN RATS

Submitted By

Marwa Ashry Hanfy Mahmoud

B.Sc. of Biochemistry and Nutrition, Faculty of Women for Arts, Science & Education,Ain Shams University, 2002

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences
Department of Environmental Basic Sciences

Under The Supervision of:

1-Dr. Maha Mahmoud Mohamed

Associate Prof. of Biochemistry Faculty of Women for Arts, Science & Education Ain Shams University

2-Prof. Dr. Hanaa Hussein El-Sayed

Prof. of Environmental Science Nutrition Chemistry and Metabolism Department National Nutrition Institute

2021

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

First of all, I would like to give my thanks to ALLAH the most Gracious, the most merciful for giving me the power to do this important step and giving me the ability to finish this work.

I am really grateful for **Prof. Dr. Maha Mahmoud Mohamed** (Assistant professor of Biochemistry, Women's College of Arts, Science and Education, Ain-Shams University) who always encouraged me and also her kindness and patience in teaching me in fact, her encouragement motivated me.

I would like to thank my supervisor **Prof. Dr. Hanaa Hussein El-Sayed** (Professor of Environmental Studies for Nutritional Chemistry and Metabolism, National Nutrition Institute) for her essential help and guidance throughout my research and without whom this thesis would not have been possible. I really appreciate all the advice and ideas that she gave to me during this research.

Many thanks to all of the members of the Basic Science Department (Institute of Environmental Studies, and Research, Ain Shams University) for their help, technical advice, and moral support.

It goes without saying that I would like to thank my family for their endless support, the unconditional love, affection, and pieces of advice they gave to me.

Finally, I wish to express my thanks to everyone who helped me in achieving this work.

Marwa Ashry Hanfy Cairo, Egypt 2021

ABSTRACT

ABSTRACT

Edible oils, preferably of plant origin are rich sources of fatty acids and other lipophilic antioxidants that assist in the prevention and/ or treatment of some diseases. This study aimed to investigate the possible protective effects of some plant oils on cement induced liver toxicity and kidney dysfunction in rats. Forty Sprague Dawley rats (20 male + 20 female) were divided into five groups (8 rats/group, four males and four females). Group1: negative control, was fed on a basal diet; group II: positive control, was fed on a basal diet contains cement (1.5 g/Kg); groups III, IV, V were fed on basal diet contain cement (1.5g/Kg) and 10 % of one the tested oils (coconut oil, or flaxseed oil or olive oil, respectively, instead of corn oil) the experiment continued for four weeks. RESULTS: Oral cement exposure resulted in a significant elevation in serum activity of alanine transaminase (ALT), Aspartate transaminase (AST), and lactate dehydrogenase (LDH) in addition to significant high levels of serum urea and creatinine. This was accompanied by a significant rise in the hepatic level of malondialdehyde (MDA). Plant oils reinstated most of the altered measured parameters. Histological examination of the liver, kidney, lungs, and brain revealed that cement exposure resulted in fibrosis in the portal triad, and focal hepatic hemorrhage, hydropic degeneration of epithelial lining renal tubules, interstitial pneumonia, and necrosis of neurons and neuronophagia. While the histological examinations in the tested oils groups revealed improvement in these organs. It can be concluded that supplementation of the diet with coconut oil, flaxseed oil, or olive oil was effective in modulating some aspects of cement induced toxicity. This efficacy may be related to the fatty acids and/ or polyphenols found in these

oils. The study indicates that coconut oil, flaxseed oil, and olive oil can be used as nutraceutical agents against cement induced toxicity.

Keywords: Coconut oil, Flaxseed oil, Olive oil, Cement, Rats

CONTENTS

List of contents

Content	Page No.
List of Abbreviations	III
List of Tables	V
List of Figures	VI
List of Photos	VIII
INTRODUCTION	1
AIM OF THE STUDY	3
REVIEW OF LITERATURE	
1.Cement	4
1.1. Chemical Composition of Cement	4
1.2. Different methods of cement dust exposure	5
1.3. Hazardous effects of cement exposure	7
2. Plant oils as a component of natural diet	11
2.1 Coconut oil	12
2.1.1. Metabolism of lauric acid in the liver	13
2.1.2. Biological and pharmacological effects	15
2.2. Flaxseed oil	18
2.2.1. Biological and pharmacological effects	23
2.3. Olive oil	26
2.3.1. Biological and pharmacological effects	27
MATERIALS AND METHODS	
1- MATERIALS	33
2- METHODS	

A- Preparation of basal diet	34	
B- Acute Toxicity Test		
C- Experimental design		
D- Biological evaluation		
E- Biochemical analysis		
F- Histopathological Examination		
G- Statistical Analysis	43	
RESULTS and Discussion		
1. Biological Experiment	44	
1.1. Feed intake, body weight gain and feed efficiency ratio	44	
1.2. The relative weights of organs	53	
2. Biochemical analysis of serum	60	
2.1. Liver Functions	60	
2.2. Kidney Functions	66	
2.3. Malondialdehyde (MDA) in liver tissue and lactate dehydrogenase		
3. Histological examination	80	
3.1. Histological examination of liver		
3.2. Histological examination of kidney	86	
3.3. Histological examination of lung	92	
3.4. Histological examination of brain	98	
CONCLUSION	10	
RECOMMENDATIONS	10	
ENGLISH SUMMARY	10	
REFERENCES	11	
المستخلص العربي	1	
المخلص العربي	3	
الخلاصة	6	
التوصية	7	

List of Abbreviations

Abbreviation	Name
ACC	Acetyl-CoA carboxylase
ALA	Alpha-linolenic acid
ALT	Alanine aminotransferase
ARA	Arachidonic acid
AST	Aspartate aminotransferase
BWG	Body weight gain
CAT	Catalase
COPD	Chronic obstructive pulmonary disease
CRP	C-reactive protein
DHA	Docosahexaenoic acid
EPA	Eicosatetraenoic acid
FER	Feed efficiency ratio
FI	Feed intake
GLDH	Glutamate dehydrogenase
GST	Glutathione S-transferase
HDL	High-density lipoprotein
HT	Hydroxytyrosol
IL-1	Interleukin-1
IL-6	Interleukin-6
LA	Lauric acid
LCFA	Long-chain fatty acids
LDH	Lactate dehydrogenase
LDL	low-density lipoprotein
MCFAs	Medium-chain fatty acids
MCT	Medium-chain triglyceride
MDA	Malondialdehyde
NFkB	Nuclear factor kB
NMSC	Non-melanoma skin cancer
Nrf1	Nuclear respiratory factor 1
PGE2	Prostaglandin E2
PUFAs	Polyunsaturated fatty acids