

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Screening of Asymptomatic Bacteriuria in Sickle Cell Pediatric Patients

Thesis

Submitted for Partial Fulfillment of Master
Degree in Clinical Pathology

By

Nouran Osama Abdel Kader Mohammed M.B., B.Ch. Ain Shams University

Under Supervision of

Assist. Prof. Dr. Dalia Hosni Abdel Hamid

Assistant Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Assist. Prof. Dr. Marwa Abdel Rasoul El-Ashry

Assistant Professor of Clinical Pathology Faculty of Medicine- Ain Shams University

Dr. Sara Mostafa Makkeyah

Lecturer of Pediatrics Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Assist. Prof. Dalia Hosni Abdel Hamid, Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Assist. Prof. Marwa Abdel Rasoul El-Ashry, Assistant Professor of Clinical Pathology, Faculty of Medicine- Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to Dr. Sara Mostafa Makkeyah, Lecturer of Pediatrics, Faculty of Medicine - Ain Shams University, for her great help, active participation and guidance.

Nouran Osama

List of Contents

Title	Page No.
List of Tables	
List of Figures	iii
List of Abbreviations	iv
Introduction	1
Aim of the Work	3
Review of Literature	4
Materials and Methods	26
Results	49
Discussion	67
Summary	73
Conclusion	75
Recommendations	76
References	77
Arabic Summary	

List of Tables

Table No.	Title Page	No.
Table (1):	Quality control strains on UriSelect™4 medium	41
Table (2):	Age and gender distributions in SCD patients	50
Table (3):	Family history and consanguinity in SCD patients	50
Table (4):	Drug therapy in SCD patients	51
Table (5):	Transfusion history in SCD patients	51
Table (6):	Complications history in SCD patients	52
Table (7):	Clinical signs in SCD patients	53
Table (8):	Hematological and chemistry profiles in the studied SCD patients	53
Table (9):	Physical and Dipstick analysis in SCD patients	54
Table (10):	Microscopic examination of MSU samples collected	54
Table (11):	Urine culture of the first MSU samples	55
Table (12):	Urine culture of the 2 nd MSU samples	56
Table (13):	Urine culture results	57
Table (14):	Age and Gender distributions among ASB and sterile urine groups	59
Table (15):	Clinical signs in ASB and sterile urine groups	60
Table (16):	Complications history among ASB and sterile urine groups	
Table (17):	Drug history among ASB and sterile urine groups	
Table (18):	Transfusion history among ASB and sterile urine group	

List of Tables Cont...

Table No.	Title	Page No.
Table (19):	Family history among ASB and s	
Table (20) :	Mean age distributions among Assterile urine groups	
Table (21):	Laboratory variables among AS Sterile urine groups	
Table (22):	Physical and dipstick analysis of MSU samples among ASB and surine group	sterile
Table (23):	Microscopic analysis of the 1 st samples among ASB and Sterile group	urine

List of Figures

Fig. No.	Title Page	No.
Figure (1):	Urine culture on bacteriological media	39
Figure (2):	Quality control strains on UriSelect™4 medium. A) <i>E. Coli</i> B) <i>Enterococci</i> C) <i>Staphylococcus aureus.</i>	
Figure (3):	<i>S.saprophticus</i> on UriSelect™4 medium	
Figure (4):	Klebsiella pneumoniae on UriSelect™4 medium	
Figure (5):	<i>E.coli</i> on UriSelect™4 medium	43
Figure (6):	Mixed growth on UriSelect™4 medium	43
Figure (7):	Structured questionnaire for screening of asymptomatic bacteruria in sickle cell paediatric patients	
Figure (8):	Organisms distribution in confirmed ASB group.	
Figure (9):	Antimicrobial susceptibility testing results among the different isolates in ASB group.	

List of Abbreviations

Abb.	Full term	
ACS	Acute chest syndrome	
AER	Albumin excretion rate	
ASB	Asymptomatic bacteriuria	
AST	Antimicrobial susceptibility testing	
BA	Blood agar	
CA	Chromogenic agar	
CFU	Colony forming unit	
CLED	Cystine lactose electrolyte deficient	
CMV	Cytomegalovirus	
E.coli	Escherichea coli	
EBV	Epstein-Barr virus	
FISH	Fluorescence in situ hybridization	
GFR	Glomerular filtration rate	
Glu	Glutamic acid	
НЬ	Hemoglobin	
HIV	Human immunodeficiency	
HPF	High power field	
MAC	MacConkey agar	
MALDI-TOF	Matrix-assisted laser desorption ionization-time of flight	
RBCs	Red blood cells	
5. saprophyticus Staphoccocus saprophyticus		
S. typhi	Salmonella typhi	
<i>S.aureus</i>	Staphylococcus aureus	
SCA	Sickle cell anaemia	
SCD	Sickle cell disease	

List of Abbreviations cont...

Abb.	Full term	
//DD.	Tun Termi	
<i>5PP</i>		
Strept.pneumoniae.Streptococcus pnumoniae		
UPEC	Uropathogenic <i>E.coli</i>	
UTIs	Urinary tract infections	
Val	Valine	

Introduction

Vickle cell disease (SCD) is a multi-systemic disease of episodic acute illness and severe organ damage. It is one of the autosomal-recessive monogenic disorders worldwide (Piel et al., 2017). SCD is a genetic mutation in which GTG is substituted for GAG in the sixth codon of the β-globin gene leading to replacement of the hydrophilic glutamic acid residue (Glu) with a hydrophobic valine residue (Val) at the sixth position in the βglobin chain, resulting in a mutated hemoglobin molecule in individuals RBCS (Eaton and Bunn, 2017).

Evidence from several studies indicated that SCD patients are more prone to develop bacteriuria compared to their healthy counterparts (Chukwu et al., 2011). Urinary tract infection (UTI) in SCD patients is precipitated by impaired immunological state like deficiency in serum opsonins and defective phagocytosis as well as altered blood flow in renal vasculature (Nicolle et al., 2005).

Urine samples are relatively sterile. Bacteriuria is considered significant if colony count is equal to or greater than 1×10^5 CFU/ml (**Rowe and Juthani, 2014**), significant bacteriuria may be either symptomatic or asymptomatic (Vasudevan, 2014). Asymptomatic bacteriuria (ASB) is isolation of bacteria with count equal to or greater than 10⁵CFU/ml in two consecutive appropriately collected fresh voided mid- stream urine samples of the same organism for a

1

child with no accompanying symptoms of infection (Nicolle et al., 2019). Urine culture is the gold standard method to diagnose ASB (Selek et al., 2017).

Traditionally Blood agar (BA) and MacConkey agar (MAC) media are being used together by most of the laboratories, Cystine lactose electrolyte-deficient (CLED) agar has been added lately. In last few decades, several chromogenic media have been developed and commercialized as *UriSelect* TM 4 and CHROMagar media allowing direct and presumptive identification of organisms on the plate itself on the basis of distinct colony colour by reaction of genus-or species-specific chromogenic with a suitable substrate. enzyme consequently reduce the burden of biochemical reactions and reduce the reporting time (Biji et al., 2017).

AIM OF THE WORK

he current study aims to investigate the prevalence of asymptomatic bacteriuria, its major determinants and its effect on kidney functions in SCD for early detection & treatment.