

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Arterial complications in living donor liver transplantation: Right or left hepatic artery reconstruction, does it differ? A retrospective study

A Thesis

Submitted for partial fulfillment of Master degree in General Surgery

By

Mohamed Osama Marei Ismaeil

M.B.B.Ch, Misr University for Science and Technology, 2015

Under Supervision of

Prof. Dr. Mohamed Fathy Abdel Ghaffar

Professor of Hepatobiliary Surgery Faculty of Medicine, Ain Shams University

Prof. Dr. Youssef Farouk Youssef

Professor of Hepatobiliary Surgery Theodor Bilharz Research Institute

Prof. Dr. Kamal Mamdouh Kamal

Assistant professor of Hepatobiliary Surgery Faculty of Medicine, Ain Shams University

Dr. Remon Mamdouh Mahfouz Ghobrial

Lecturer of Hepatobiliary Surgery Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2021

First and foremost, I feel always indebted to Allah, the **Most Beneficent** and **Merciful**, who gave me the strength to accomplish this work,

My deepest gratitude to my supervisor, **Prof. Dr. Mohamed**Fathy Abdel Ghaffar, Professor of Hepatobiliary Surgery,
Faculty of Medicine, Ain Shams University, for his valuable
guidance and expert supervision, in addition to his great deal of
support and encouragement. I really have the honor to complete this
work under his supervision.

My appreciation and gratitude to Prof. Dr. Youssef Farouk Youssef and Prof. Dr. Mohamed Abbass Professors of Hepatobiliary Surgery, Theodor Bilharz Research Institute, for their great support and valuable reviews and recommendations.

I would like to express my great and deep appreciation and thanks to **Assist. Prof. Dr. Kamal Mamdouh Kamal,** Assistant Professor of Hepatobiliary Surgery, Faculty of Medicine, Ain Shams University, for his meticulous supervision, and his patience in reviewing and correcting this work. I greatly appreciate his efforts.

I can't forget to thank **Dr. Remon Mamdouh Mahfouz Ghobrial,** Lecturer of Hepatobiliary Surgery, Faculty of Medicine, Ain Shams University for his encouragement and cooperation.

Special thanks to my **Parents and wife** and all members of my **Family** for their continuous encouragement, enduring me and pushing me forward in every step of my life.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	4
Review of Literature	
Surgical Anatomy of the Liver	5
Liver Transplantation	12
Indications for Liver Transplantation	18
Surgical Technique of Living Donor Liver Transplantation	22
Liver Transplantation Complications	50
Patients and Methods	68
Results	74
Discussion	91
Conclusion	105
Recommendations	106
Summary	107
References	110
Arabic Summary	

List of Abbreviations

Abbr. Full-term

ASCOT : Ain shams center for organ transplantation

BC: Biliary Complications

CAC : Caval anastomosis complications

CHA : Common hepatic artery

CHD : Common hepatic duct

CLD : Chronic liver disease

DDLT : Deceased donor liver transplantation

HA : Hepatic artery

HAC : Hepatic arterial complications

HAR : Hepatic artery reconstruction

HARI : Hepatic artery resistive index

HAS : Heptic artery stenosis

HAT : Hepatic artery thrombosis

HCC: Hepatocellular carcinoma

HV : Hepatic vein

IC: Ischemic cholangiopathy

IVC : Inferior vena cava

LDLT : Living donor liver transplantation

LHA : Left hepatic artery

LL-LDLT: Living donor liver transplantation using the left lobe

LPV : Left portal vein

LT : Liver transplantation

MELD : Model of end stage liver disease

MHA : Middle hepatic arteryMHV : Middle hepatic vein

NHBD: Non-heart beating donor

NLI : National Liver institute

OLT : Orthotopic liver Transplantation

PHA : Proper hepatic artery

PV : Portal vein

PVT : Portal vein thrombosis

RHA : Right Hepatic artery

RHA : Right hepatic artery

RHV : Right hepatic vein

RI : Resistive index

RL-LDLT: Living donor liver transplantation using the right lobe

SD : Standard deviation

SMA : Superior mesenteric artery

SPSS : Statistical package for social science

TACE: Trans- arterial chemo embolization

List of Tables

Table No.	Title Page No.
Table (1):	Types of liver transplantation
Table (2):	Indications for liver transplantation
Table (3):	Vascular complications following orthotopic liver transplantation
Table (4):	CHILD score
Table (5):	Distribution of study population according to their years of data collection74
Table (6):	Distribution of study population according to their demographic data regarding sex and age
Table (7):	Distribution of study population according to the recipient's inflow artery
Table (8):	Distribution of study population according to the occurrence of hepatic artery thrombosis and stenosis
Table (9):	Distribution of arterial complications in the group 2 into either HAT and HAS
Table (10):	Intervention done for cases in the group 2
Table (11):	Distribution of arterial complications according to the intervention done:
Table (12):	Comparison between Group 1 and Group 2 according to their years of data collection

Table (13):	Demographic features of the two studied groups
Table (14):	Comparison between the two studied groups according to the recipient's inflow artery used
Table (15):	Complications in the two studied groups
Table (16):	Percentage of hepatic arterial complications classified according to year of operations in group 2 subgroups
Table (17):	Mean values of laboratory investigations measured at pre and post operation in group 2 Subgroups
Table (18):	Risk factors for arterial complications in group 2 subgroups
Table (19):	Comparison between Group 2 Subgroups according to the intervention performed 88
Table (20):	Comparison between Group 2 A (Right hepatic artery as an inflow artery) and Group 2 B (left hepatic artery as an inflow artery) according to their HAT, early, late and HAS

List of Figures

Figure No.	Title	Page No.
Figure (1):	An overview of the venous posystem – draining into the hepatic povein.	ortal
Figure (2):	Diagram to show the intraher distribution of the hepatic artery	
Figure (3):	Close anatomical relation of LPV	7
Figure (4):	Hepatic arteries	8
Figure (5):	Variations of hepatic artery	10
Figure (6):	Division of celiac trunk	11
Figure (7):	Indications for liver transplantatio Egypt	
Figure (8):	Hepatic CT angiography showing standard anatomy & example variants	of
Figure (9):	Dissection of the parenchyma and a retrieval.	_
Figure (10):	The line of transection (at the same of encircling by a right-angled for of the right hepatic duct at the tim liver transection.	cep) e of
Figure (11):	The four major prerequisites technically successful LDLT	
Figure (12):	To alleviate anastomotic stenosis of and V8, widening of the caudal incision of orifices is made at back t	slit-

Figure (13):	Placement of a composite vessel patch offsets stenosis-inducing tissue reaction of PTFE grafts and avoids tearing thinwalled V5/V8 during suture
Figure (14):	Small caudal incision (thick black arrow) is made at V5/V8 to widen orifices
Figure (15):	Intraoperative images of HA reconstruction
Figure (16):	The conventional twisting technique 41
Figure (17):	Placing two stitches to the middle of the posterior wall (6 o'clock position) and middle of the anterior wall (12 o'clock position) in the modified technique
Figure (18):	The artery is twisted 90_ to the right side
Figure (19):	The artery is twisted 90_ to the left side instead of 180_ rotation once to place the back wall stitches
Figure (20):	The reconstruction of the hepatic artery was performed before the liver graft was transplanted
Figure (21):	Back-table technique of unification arterioplasty to form a common orifice 45
	Representation of an accessory right hepatic artery from the superior mesenteric artery, and a reconstruction using a superior mesenteric artery Carrel-patch with the splenic artery
Figure (23):	CT angiography for HAS56

Figure (24):	Pie chart distribution of arterial complications in liver transplantation according to their demographic data regarding sex and age.	75
Figure (25):	Pie chart distribution of arterial complications in liver transplantation according to their inflow artery.	76
Figure (26):	Pie chart Distribution of study population according to the occurrence of hepatic artery thrombosis and stenosis.	77
Figure (27):	Bar chart distribution of arterial complications in the Group 2 according to their HAT	78
Figure (28):	Bar chart distribution of arterial complications in liver transplantation according to their intervention	79
Figure (29):	Bar chart showing gender distribution among the two studied groups	32
Figure (30):	Bar chart showing the comparison between the two studied groups according to the recipient's inflow artery used	33
Figure (31):	Bar chart showing Complications in the two studied groups	34
Figure (32):	Bar chart between Group 2 Subgroups according to their HAT, early, late and HAS.	90

Introduction

iver transplantation (LT) has emerged as an established and well-accepted therapeutic option for patients with acute and chronic liver failure and hepatocellular carcinoma (*Graziadei et al.*, 2016).

The shortage of organ donors has become a major global problem. Therefore, living donor liver transplantation (LDLT) has become a standard therapy. However, large number of risks associated with LDLT compared with deceased donor liver transplantation (DDLT), especially concerning arterial and biliary complications. LDLT is technically difficult due to the small and short bile duct, short hepatic artery, severe intimal damage, and limited usable vessel graf (*Miyagi et al.*, 2018).

Any strategy to reduce technical complications and prevent graft loss and the need for retransplantation would be crucial to improving management of chronic end-stage liver disease (*Reigada et al.*, 2017).

Hepatic artery thrombosis (HAT) is the most severe vascular complication with an incidence ranging from 2 to 9% in adults. It's occurrence after LT increases postoperative morbidity and contributes to subsequent primary graft dysfunction, ischemic biliary complications and long-term graft loss (*Herrero et al.*, 2017).