

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Dyslexia among Arabic Speaking Egyptian Children with Unilateral Cochlear Implant

Thesis

Submitted for the Partial Fulfilment of the requirement of Master Degree in Phoniatrics

By Shereen Alaa EL-Din Taha Taha

M.B., B.Ch. Faculty of Medicine, Zagazig University Resident of Phoniatrics at Zagazig University Hospitals

Supervised by

Prof. Dr. Nirvana Gamal EL -Din Hafez

Professor of Phoniatrics - ENT Department Faculty of Medicine, Ain Shams University

Prof. Dr. Elham Magdy Hassan

Assistant Professor of Phoniatrics - ENT Department Faculty of Medicine, Zagazig University

Dr. / Mariam Salah Shadi

Lecturer of Phoniatrics - ENT Department Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First of all, and foremost, all my deepest thanks to **ALLAH**, the most merciful and who is always and forever behind all success.

I would like to express my deep and sincere gratitude to **Prof. Dr. Nirvana Gamal EL -Din Hafez**, Professor of Phoniatrics, Faculty of Medicine, Ain Shams University, for providing invaluable guidance throughout this research. It was a great privilege and honor to work and study under her guidance and I am extremely grateful for what she has offered me.

I am deeply greatly indebted to **Prof. Dr. Elham Magdy Hassan,** Assistant Professor of Phoniatrics, Faculty of Medicine, Zagazig University, who devoted time and efforts to this work. I am grateful for her for her valuable advice and for her sincere help and ultimate support.

My sincere thanks and appreciation also goes to **Dr. Mariam Salah Shadi,** Lecturer of Phoniatrics, Faculty of Medicine, Ain Shams University, for her continuous encouragement and for her kind help and constant support.

An endless thanks for My Family for their support without it, I would never completed this work.

Shereen Alaa El Din Taha

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iv
Introduction	1
Aim of the Work	4
Review of Literature	5
Reading development in normal hearing children	5
Reading development	
Learning to read	13
Reading disabilities	
Cochlear implantation and reading disabilities	
Subjects and Methods	49
Results	57
Discussion	81
Summary	101
Conclusion and Recommendations	105
References	107
Arabic Summary	

List of Abbreviations

Abb.	Full term
ARST	Arabic Reading Screening Test
CIs	Cochlear Implants
DRC	Dual Route Cascaded
DSM	Diagnostic and Statistical Manual of Mental Disorders
EOI	Executive-organizational-integrative
HA	Hearing Aid
HL	Hearing Loss
IQ	Intelligence Quotient
PA	Phonological Awareness
PDP	Parallel distributed processing
PLS-4	Modified Preschool Language Scale
STM	Short Term Memory
TH	Typical Hearing
WHO	World Health Organization
WM	Working Memory

List of Tables

Table No.	Title	Page No.
Table (1):	Stages of development of reading	
Table (2):	Characteristics of the study participan	ts 57
Table (3):	Results of the different sub-items a total score of the Phonological Awa Test among the study participants	areness
Table (4):	Comparison between the Phono Awareness Test results of the participants and their age-matched average scores:	study normal
Table (5):	Correlation between the study partice Phonological Awareness Test result their age at the time of co- implantation:	ts and ochlear
Table (6):	Correlation between the study partice. Phonological Awareness Test result their language ages:	ts and
Table (7):	Results of the different sub-items a total score of the Arabic Reading Scr Test among the study participants:	reening
Table (8):	Comparison between the Arabic R Screening Test results of the participants and their age-matched average scores:	eading study normal

List of Tables Cont...

Table No.	Title	Page No.
Table (9):	Correlation between the study part. Arabic Reading Screening Test resultheir age at the time of implantation:	ults and cochlear
Table (10):	Correlation between the study part. Arabic Reading Screening Test resultheir language ages:	ults and
Table (11):	Correlation between the Arabic Screening Test results of the participants and their Phor Awareness Test results:	study nological
Table (12):	Association between the study part. Phonological Awareness Test resurrabic Reading Screening Test resurrein their chosen side for cochlear implant	lts and ults and
Table (13):	Association between the study part. Phonological Awareness Test resurrable Reading Screening Test resumplanting the better or worse hearing.	lts and ults and

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Skills involved in reading	7
Figure (2):	Components of the dual-route (DRC) model of single word process	
Figure (3):	Components of the parallel d processing (PDP) model of sin processing	gle word
Figure (4):	Correlation between study participal scores of the Phonological Aware and their total language age	ness Test
Figure (5):	Correlation between study participal scores of the Arabic Reading Screen and their total language age	ening Test

Introduction

Hearing loss affects millions of people around the world and is estimated to be the fourth leading cause of disability globally (Cunningham and Tucci, 2017). WHO estimates in 2008 found that 360 million people worldwide live with disabling hearing loss, including 32 million children (WHO, 2012). Hearing aids provide benefits for the majority of people with hearing loss, those with more severe hearing loss may benefit more from cochlear implantation (Barnett et al., 2016).

Cochlear implants (CIs) have offered restoration of hearing to people with severe to profound hearing loss. Restoration of hearing with CI causes changes in the sound inputs which are processed in the brain, which does not only include the auditory cortex, but also it involves other areas such as visual cortex (Stropahl et al., 2017).

Communication skills of children with hearing loss can be improved with the use of cochlear implants. At school, both normal and hearing-impaired children are taught to read and write the same curriculum, but when evaluating the classroom skills of hearing-impaired children, several differences in their reading skills can be found compared to their normal-hearing peers (*Tiryaki*, 2014).

Reading skills are necessary for educational development in normal hearing children, many studies have shown that

1

children with hearing loss often experience delays in reading (Rezaei et al., 2016).

Hearing impaired children follow the same semantic process when acquiring the same group of skills compared with their normal hearing peers when their reading skills are examined. However, as a result of the insufficiency of the sound stimuli reaching the brain during the speech and language development, hearing loss can negatively affect the reading skills of hearing-impaired individuals (*Tiryaki*, 2014).

Reading is the ability to transform written language into spoken information and extract its meaning in an efficient manner (Horowitz-Kraus et al., 2014). Reading fluency is defined as the ability to read accurately and quickly (Katzir et al., 2016), is based on language, visual processing and higherlevel (executive functions). Executive functions are the general core cognitive mechanisms used to adjust and facilitate various cognitive processes, such as planning and organization (Horowitz-Kraus, 2016).

The reading process includes corresponding sounds with abstract graphemes (phonological process), identifying the words or word-parts (orthographic process), and extracting the meaning of the information (semantic ability) (Horowitz-Kraus, 2016).

In normal hearing children, phonology is very essential for reading acquisition, so we need to know whether phonological processing and representations can develop in deaf children in the absence of an adequate auditory capacity (Domínguez et al., 2019). CI has a direct effect on speech perception and on the development of phonological representations of words (*Domínguez et al.*, 2019), so we should consider that; phonology is not only auditory, but also audiovisual for hearing and deaf people (Bayard et al., 2014). The role of CIs which greatly improve auditory perception is to improve deaf children auditory information that should help in the development of phonological representations of speech and facilitate reading acquisition (Johnson & Goswami, 2010).

Another point of view suggests that reading acquisition follows the same path in deaf and hearing children, so there is an important association between phonology and reading, so reading difficulties are considered as phonological deficits in case of both deaf and hearing children (Bochner & Kelstone, 2016).

Assessment of reading abilities in cochlear implant children has been an issue to discuss as these children need urgent intervention to help them catch up with their normal peers. CI children are rarely assessed for their reading skills in Egypt, so integration of learning assessment in their general evaluation and during follow up should be considered for early intervention.

AIM OF THE WORK

This work aims to assess reading abilities in cochlear implant school children in order to highlight their dyslexia profile, and to consider such problems in earlier years of life. This would subsequently improve their expected academic delay.