

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Structural Engineering

Retrofitting of Unreinforced Masonry walls Using Basalt Textile Reinforced Mortar

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science In Civil Engineering

(Structural Engineering)

By

Mohamed Ibrahim Aly Sharaf

Bachelor of Science In Civil Engineering

(Structural Engineering)

Faculty of Engineering, Ain Shams University, 2017

Supervised By

Prof. Dr. Hany Mohamed El-Shafie Professor of properties and testing of materials **Structural Engineering Department** Faculty of Engineering - Ain Shams University

Dr. Ahmed Rashad Mohamed (رحمه الله) **Associate Professor Structural Engineering Department** Faculty of Engineering - Ain Shams University

Dr. Mohamed Kohail Fayez **Associate Professor Structural Engineering Department** Faculty of Engineering - Ain Shams University Faculty of Engineering - Ain Shams University

Dr. Mahmoud Galal Assistant Professor **Structural Engineering Department**

Cairo - (2021)

STATEMENT

This thesis is submitted as a partial fulfilment of Master of Science in Civil Engineering Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student name
Mohamed Ibrahim Aly Sharaf
Signature
Date: /

RESEARCHER DATA

Name : Mohamed Ibrahim Aly Sharaf

Date of birth : 28 March 1994

Place of birth : Cairo, Egypt.

Last academic degree : Bachelor of Science

Field of specialization : Structural Engineering

University issued the degree : Faculty of Engineering, Ain Shams University

Date of issued degree : July 2017

Current job : Demonstrator

ACKNOWLEDGEMENTS

I would like to express my deepest thanks and appreciation to my supervisor, Prof. Hany El-Shafie for his guidance and advice throughout this work. I am grateful to him all for having the opportunity to work under his supervision.

Special thanks for one of my supervisors Dr. Ahmed Rashad, who died before completing this research, special thanks for his valuable assistance, guidance, patience and endless support throughout this research.

Profound gratitude to my supervisor Dr. Mohamed Kohail M. Fayez for his help and kind cooperation during the experimental phase of this study and his valuable advice during my research.

Special thanks to my supervisor Dr. Mahmoud Galal who completed the supervision of this research after the death of Dr. Ahmed Rashad, also thanks to his great effort, valuable assistance, guidance and reviewing of the manuscript are greatly acknowledged.

The experimental work was carried out at the Properties and Testing of Materials Laboratory of the Structural Engineering Department of Ain- Shams University. The help of the laboratory staff in developing work is greatly appreciated. For his distinguished assistance during the experimental work, I would like to express my deepest gratitude to Mr. Sayed Elithy.

I will always be indebted to my parents for their loving support and encouragement and for making me believe in my dreams and for supporting me to achieve them.

ABSTRACT

Unreinforced masonry (URM) structures constitute the largest part of the current worldwide buildings. The need for retrofitting of these structures is urgent due to the poor seismic performance under moderate and high seismic demand. Many techniques have been developed to retrofit the URM structures. The research Basalt textile reinforced mortar (BTRM) has drawn attention as an innovative retrofitting composite, due to its superior characteristics including simplicity, high performance at high temperatures in addition to low cost, in comparison to fiber reinforced polymer (FRP). Textile reinforced mortar (TRM) is a cementbased composite material that consists of high-strength fibers (i.e., carbon, glass, or basalt) in the form of textiles combined with inorganic matrices, such as cement-based mortars. Thus, BTRM represents new suitable technique for out of plane retrofitting for URM walls. This study aims to investigate the out of plane behavior of URM walls retrofitted by using BTRM and to assess the effectiveness of this retrofitting technique on the out-of-plane performance. The experimental program is divided into two Phases. The first phase is designed to study the material characterization used in the investigation. A tension test was conducted on BTRM coupon specimens to identify its mechanical properties in tension. While the second phase was designed to investigate the behavior of URM retrofitted by BTRM. Two Groups of fourteen URM wall specimens were constructed in vertical and horizontal spanning scheme. Parameters under study for both groups include wall thickness (single and double wythe), mesh opening size $(5 \times 5 \text{mm} \text{ and } 10 \times 10 \text{mm})$, number of reinforcing layers (two and four layers) and retrofitting scheme (one side or both sides). The test results demonstrated the efficiency of (BTRM) as a retrofitting technique for URM walls. Out of plane flexural capacity remarkably increased by 188% to 400% compared to control samples. In addition, energy absorption increased 22 to 66 times. A proposal to

modify ACI model has been introduced to be more reliable for flexural capacity prediction of retrofitted URM walls.

Keywords: Unreinforced Masonry, Out-of-plane, Basalt textiles, Basalt textile reinforced mortar, BTRM, Retrofitting.

TABLE OF CONTENTS

STA	ATEMENT	i
RES	SEARCHER DATA	ii
ACF	KNOWLEDGEMENTS	iii
ABS	STRACT	iv
Tabl	le of Contents	vi
List	of Tables	ix
List	of Figures	X
CHA	APTER ONE: Introduction	1
1.1.	Background	1
1.2.	Research objectives	3
1.3.	Thesis content	3
CHA	APTER TWO: Literature Review	5
2.1.	Introduction	5
2.2.	History of Masonry as a Building Material	6
2.2	2.1. Masonry in Construction	6
2.2	2.2. Types of masonry units	6
2.2	2.3. Properties of Masonry	7
2.2	2.4. Properties of Mortar	8
2.3.	Unreinforced Masonry Structure against lateral load	9
2.4.	Failure Modes of Unreinforced Masonry Structures	. 11
2.5.	Out-of-plane Failure Mode	. 12
2.6.	Traditional Retrofitting Techniques	. 13
2.6	6.1.Repointing	. 13
2.6	6.2. Grout and Epoxy Injection	. 16
	2.6.2.1. Grout Injection	6
<i>'</i>	2.6.2.2. Epoxy Injection	7

2.6.3. Concrete Jacket	18
2.6.4. Ferrocement Overlays	19
2.6.5. Masonry Replacement	20
2.6.6. Anchor and Tie	21
2.6.7. Steel Bracing	22
2.6.8. Summary of the Disadvantages of the Traditional retrofitti	ing Techniques
23	
2.7. Textile Reinforced Mortar (TRM)	25
2.7.1. History of Textiles	27
2.7.2. Types of Textile Material	28
2.7.3. TRM Testing	29
2.7.3.1. Methods of Testing	29
2.7.3.2. Behavior of TRM in Tension	30
2.8. Retrofitting URM using Textile Reinforced Mortar	33
2.9. Research Objectives	39
CHAPTER THREE: Research Program	
3.1. Introduction	40
3.2. Research plan	40
3.2.1. Phase (I)	41
3.2.1.1. Masonry unit properties	41
3.2.1.2. Masonry mortar properties	45
3.2.1.3. Masonry prisms	46
3.2.1.4. Polymer modified cement mortar (PMC) properties	47
3.2.1.5. Basalt textiles properties	49
3.2.1.6. Assembly of (PM) and basalt textiles as composite ma	aterial 51
3.2.2. Phase (II)	58
3.2.2.1. Introduction	58
3.2.2.2 Construction and preparation of specimens	62

3.2.2.3. Specimens Testing	66
CHAPTER FOUR: Results and Discussion	67
4.1. Introduction	67
4.2. Test Results	67
4.2.1. Failure modes	67
4.2.2. Load versus mid-span deflection	70
4.3. Discussion of test results	74
4.3.1. Effect of number of layers	74
4.3.2. Effect of textiles mesh opening size	75
4.3.3. Effect of wall thickness	77
4.3.4. Effect of reinforced surface	79
4.3.5. Effect of spanning direction	79
4.4. Analytical study	81
4.4.1. Basis for flexural design	81
4.4.2. Theoretical versus experimental results	83
4.4.3. Proposed model	91
4.4.4. Capacity Prediction after modification	91
CHAPTER FIVE: Summary, Conclusions and Recommendations.	93
5.1. Summary	93
5.2. Conclusions	95
5.3. Recommendations	97
REFRENCES	99

List of Tables

Table (2.1): Mechanical Properties of the clay units8
Table (2.2): Properties requirement of masonry mortar (ASTM C270)8
Table (2.3): Disadvantages of the traditional retrofitting techniques23
Table (3.1): Test results of uniaxial compression test for clay brick units42
Table (3.2): Test results of modulus of rupture test for clay brick units43
Table (3.3): Test results of splitting tension test for clay brick units44
Table (3.4): Summarizes the obtained properties of the masonry clay bricks44
Table (3.5): Test results of axial compression test for mortar cubes45
Table (3.6): The obtained properties of the polymer modified mortar49
Table (3.7): The Mechanical and physical properties of the basalt textiles 50
Table (3.8): Test matrix of BTRM coupon specimens51
Table (3.9): Test results of BTRM tension test56
Table (3.10): Test matrix59
Table (4.1): Test results
Table (4.2): Analytical models for flexural capacity for retrofitted masonry
walls by TRM82
Table (4.3): Theoretical versus experimental flexural capacities (KN.m) for
vertically spanning specimens using various models84
Table (4.4): Theoretical versus experimental flexural capacities (KN.m) for
horizontally spanning specimens using various models85
Table (4.5): The standard deviation of the various models from the experimental
results89

List of Figures

Figure (2.1): Different types of brick and block units
Figure (2.2): Running bond pattern9
Figure (2.3): The damages caused by Nepal earthquake (2015) on the URM
structures (Dong et al. 2020)10
Figure (2.4): Collapse of URM structure caused by Bologna earthquake (2012)
(Dong et al. 2020)
Figure (2.5): Failure modes of masonry walls because of lateral loads
Figure (2.6): Out-of-plane failures of URM structures (Dutta, Mukhopadhyay,
and Goswami 2013)
Figure (2.7): The repointing of masonry wall
Figure (2.8): Mode of failure and test results discussed by Quagliarini 201615
Figure (2.9): Grout injection of masonry stone wall
Figure (2.10): Reinforced concrete jacketing added to masonry walls
Figure (2.11): Ferrocement overlays for retrofitting of masonry walls20
Figure (2.12): Replacement of masonry parts process
Figure (2.13): Example of tying historical masonry structure in Milan22
Figure (2.14): Steel bracing performance after New Zealand earthquake 2011.23
Figure (2.15): Textile wrap and weft directions
Figure (2.16): Different textiles configurations
Figure (2. 17): Various material types of textiles29
Figure (2.18): Methods of testing TRM coupons in tension
Figure (2. 19): Test setup of the TRM coupons with the two methods31
Figure (2.20): Typical stages of stress-strain curve for TRM coupons31
Figure (2.21): Test results of TRM coupons (X. Wang, Lam, and Iu 2019)32
Figure (2.22): Test results of TRM coupons test held by (Younis, Ebead, and
Shrestha 2020)
Figure (2.23): Test results of single and double wythe specimens (F A Kariou et
al. 2018)

Figure (2.24): Failure modes and test results (Harajli, ElKhatib, and San-Jos	e
2010)	36
Figure (2.25): Test setup and test results of (Dong et al. 2020)	38
Figure (3.1): Surface preparation using gypsum capping	41
Figure (3.2): Uniaxial compression test of clay brick units.	42
Figure (3.3): Modulus of rupture test of clay brick units.	43
Figure (3.4): Splitting Tension test of clay brick units	44
Figure (3.5): Axial Compression test for mortar cubes.	45
Figure (3.6): Axial Compression test for masonry prisms.	46
Figure (3.7): Stress-Strain response of masonry prisms	47
Figure (3.8): Axial Compression test for strengthening mortar cubes	48
Figure (3.9): Splitting tension test for strengthening mortar cubes	48
Figure (3.10): Flow table test for strengthening mortar.	49
Figure (3.11): Basalt textiles rolls and different mesh configurations	50
Figure (3.12): Test Setup and configurations of coupon specimens	51
Figure (3.13): BTRM specimens preparation procedure	53
Figure (3.14): Test Setup and modes of failure of BTRM coupons	54
Figure (3.15): The three stages of the TRM coupons. (Arboleda et al. 2016).	55
Figure (3.16): Load-Extension response of BTRM Coupons	56
Figure (3.17): Single Wythe walls dimensions and strengthening mortar	60
Figure (3.18): Double Wythe walls dimensions and strengthening mortar	61
Figure (3.19): Vertically spanning specimens preparation procedure	64
Figure (3.20): Horizontally spanning specimens preparation procedure	65
Figure (3.21): Test setup of out-of-plane loading for all specimens	66