

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

Behaviour of exterior beam column joints with coupled reinforcement

BY

Ahmed Yaseen Al-Tuhami AbuZeid Al-Tuhami

B.Sc. Civil Engineering, 2014

A Thesis submitted in Partial Fulfillment of the Requirements of the Degree of

Master of Science in Structural Engineering

Supervised by:

Prof. Dr. Ahmed Hassan Ahmed Ghallab

Professor of concrete structures - Structural Department Faculty of Engineering - Ain Shams University - Cairo

Prof. Dr. Soliman Soliman Soliman Ali-Eldin

Professor of mechanical design Faculty of Engineering – Zagazig University – Cairo

Cairo-2020

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

Behaviour of exterior beam column joints with coupled reinforcement

\mathbf{BY}

Ahmed Yaseen Al-Tuhami AbuZeid Al-Tuhami

Degree of Master of Science in Structural Engineering

Examining Committee

Prof. Dr. Ahmed Moussa Abdulrahman

Professor of concrete structures - Structural Department Faculty of Engineering - Helwan University - Cairo

Prof. Dr. Ahmed Sherif Ali Ahmed Mohamed Essawy

Professor of concrete structures - Structural Department Faculty of Engineering - Ain Shams University - Cairo

Prof. Dr. Ahmed Hassan Ahmed Ghallab

Professor of concrete structures - Structural Department Faculty of Engineering – Ain Shams University – Cairo

Prof. Dr. Soliman Soliman Soliman Ali-Eldin

Professor of mechanical design

Faculty of Engineering – Zagazig University – Cairo

STATEMENT

This thesis is submitted to Ain Shams University, Cairo, Egypt, in

partial fulfillment of the requirements for the degree of Master of Science in

Structural Engineering.

The work included in this thesis was carried out by the author

No part of this thesis has been submitted for a degree or a qualification

at any other university or institute.

Date

: / / 2020

Name

: Ahmed Yaseen Al-Tuhami AbuZeid Al-Tuhami

Signature :

ACKNOWLEDGEMENTS

First of all, thank to Allah for helping me to complete this work; my power comes first from Allah.

I would like to express my sincere appreciation to those who have mainly contributed towards the successful completion of this thesis:

My supervisors Professor Dr. Ahmed Hassan Ahmed Ghallab and Professor DR. Soliman Soliman Ali Eldin have always given me encouragement and support especially when it was needed. His fatherly attitude and his faith in my potentials have given me an unequivocal inspection. This has been positively reflected in my effort towards the completion of this work. In addition, he has removed all obstacles that

I am greatly indebted to Professor Dr. Al-Tuhami AbuZeid Al-Tuhami for suggesting the project, and for his guidance, support, patience, and stimulating directions throughout all the steps of the research work. His subtle appreciation of my work had a tremendous effect on my productivity.

ABSTRACT

Exterior corner beam column joint is a critical region in reinforced concrete structures where through it, large stresses to and from the adjoining members are transferred. The breakdown of this joint always causes a failure of the structure, as well it is very difficult to repair this joint compared to any other structural element. Many structural problems arising in the knee joint, such as deficiencies in mechanical properties due to rebar cold bending and the problems of congestion of the joints as a result of the splicing of the reinforcing bars. In order to overcome these problems, the present study examined the structural behavior of knee joint, subjected to closing quasi-static loads, with new use of L-shaped mechanical coupler to connect the perpendicular main tension reinforcing bars instead of bending it or splicing the rebars. Eight full-scale specimens divided into four groups were tested. Each group consists of two specimens, a conventional and a proposed reinforcement detail specimen. The parameters also include the effect of concrete grade and presence of horizontal and vertical stirrups in the knee joint. The results of this study showed that, with the use of L-shaped mechanical coupler, significant increase in ductility, efficiency, performance and load carrying capacities were occurred.

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENT	i
ABSTRACT	ii
TABLE OF CONTENTS	
TABLE OF FIGURES	viii
LIST OF TABLES	xvii
NOTATIONS	XXX
CHAPTER (1)	
INTRODUCTION.	
1.1 General	2
1.2 Problem statement	3
1.3 Objective of study	3
1.4 Methodology	3
1.2 Thesis organization	4
CHAPTER (2)	
REVIEW OF LITERATURE	
2.1 Introduction	7
2.2 Bending of reinforcing bars	7
2.2.1 Cold Bending	7
2.2.2 Researches conducted for the effect of cold bending the rebar	8
2.3 Mechanical Coupler	12
2.3.1 Compression Coupler	12
2.3.2 Full Mechanical Coupler	13
2.3.3 Types of full mechanical coupler	13
2.3.4 Code requirements for the design of mechanical Coupler	16
2.3.5 Researches conducted for mechanical coupler	17
2.4 Exterior corner joint	20
2.4.1 Corner efficiency	21
2.4.2 Mechanical behaviour of corner joint subjected to closing moment.	22

Table of Contents

2.4.3 Monotonic tests of corner joint subjected to closing moment	25
2.4.4 Mechanical behaviour of corner joint subjected to opening moment	33
2.4.5 Research conducted on Knee joint subjected to opening moment	34
2.5 Strut and Tie Modeling	40
2.5.1 Requirements	40
2.5.2 Mode of failure	41
2.5.3 Struts	41
2.5.4 Tension Ties.	43
2.5.5 Truss Nodes	43
2.5.6 Dimensional component of STM	44
2.5.7 Curved-Bar Nodes	44
2.5.8 General rules for satisfactory design of curved bar node	45
2.5.9 Design of Curved-bar node	46
CHAPTER (3)	
Experimental work program	
3.1 Introduction	49
3.2 Manufacture of L-Shape Coupler and Preparation of reinforcing bar ends.	50
3.2.1 Design requirements of L-shape mechanical coupler	50
3.2.2 Rebar and coupler material	51
3.2.3 Cross-section area requirement of the mechanical coupler	52
branches	
3.2.4 Manufacturing steps of mechanical L-shaped coupler	52
3.3 Preparation of reinforcing bar ends	55
3.3.1 Preparation of reinforcing bar ends and threads profile	55
3.3.2 Enlargement the ends of the reinforcing bar	56
3.3.3 Threading of bar ends for enlargement and non-enlargement	57
reinforcing bars	
3.3.4 Testing the produced L-shaped mechanical coupler	58
3.4 Manufacture and testing of a mechanical coupler that connects a straight	61
reinforcing bar aligned with its axis	
3.4.1 Fabrication steps	61
3.4.2 Specimens Testing	62
3.5 Beam column joint specimen's fabrication	63

3.5.1 Rebar and coupler preparation	63
3.5.2 Concrete mixes and specimens preparation	64
3.5.3 Reinforcement details and specimens dimensions	67
3.5.4 Specimen instrumentation	69
3.5.4.1 Internal instrumentation	69
3.5.4.2 External instrumentation	70
3.6 Test Setup	72
CHAPTER (4)	
Test Result	
4.1 Introduction	74
4.2 Group I	74
4.2.1 Mode of failure	74
4.2.2 Load-deflection response	76
4.2.3 Cracks width	77
4.2.4 Internal and external strain gauges	78
4.2.5 Lateral displacement at outside corner joint along the beam axis	80
4.3 Group II	80
4.3.1 Mode of failure	79
4.3.2 Load-displacement response	83
4.3.3 Crack width	83
4.3.4 Internal and external strain gauges	86
4.3.5 Lateral displacement	88
4.4 Group III	89
4.4.1 Mode of failure	89
4.4.2 Load-displacement response	91
4.4.3 Crack width	92
4.4.4 Internal and external strain gauges	93
4.4.5 Lateral displacement	95
4.5 Group IV	96
4.5.1 Mode of failure	96
4.5.2 Load-displacement response	98

4.5.3 Crack width
4.5.4 Internal and external strain gauges
4.5.5 Lateral displacement
4.6 Behavior of knee joint with conventional reinforcement detailing for
different concrete grades
4.6.1 Mode of failure
4.6.2 General behavior of reference specimens
4.6.3 Crack width
4.6.4 Internal and external strain gauges
4.7 Behavior of knee joint with L-shape coupler for different concrete grades
4.7.1 Mode of failure
4.7.2 General behavior of proposed specimen
4.7.3 Crack width
4.7.4 Internal and external strain gauges
4.7.5 Lateral displacement
CHAPTER (5)
Design of Knee joint using STM
5.1 Knee Joint Analytical Design and Test Procedure
5.2 Check maximum horizontal shear force in knee joint for specimens with
grade 34 MPa
5.3 Strut and tie scheme proposed at Knee joint
5.4 Analyses the strut and tie corner joint
5.5 Force flow in the D-region
5.6 Design beam column joint for specimens with 34 MPa compressive
strengths
5.6.1 Dimensions of component strut and tie for node B
5.6.2 Design strut EF and ED
5.6.3 Design diagonal strut EB
5.6.4 Design node E
5.7 Design beam column joint for specimens with 55 MPa compressive
strengths
5.7.1 Design node B
5.7.2 Design strut EF and ED