

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Ain Shams University Faculty of Engineering Structural Engineering Department

Mechanical Characteristics of Ambient Cured Alkali-Activated Slag Concrete Exposed to Elevated Temperature

By

Ismail Ahmed Mohamed Amer

M.Sc. Civil Engineering Ain Shams University, 2016

A Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Civil Engineering (Structural Engineering)

Supervisors

Prof. Dr. Mohamed A. Khalaf

Professor of Properties and Testing of Materials Structural Engineering Department Faculty of Engineering - Ain Shams University

Dr. Ahmed Rashad (Allah forgive him)

Associate Professor Structural Engineering Department Faculty of Engineering- Ain Shams University

Dr. Mohamed Kohail

Associate Professor Structural Engineering Department Faculty of Engineering- Ain Shams University

Dr. Mohamed S. El-Feky

Associate Professor Civil Engineering Department National Research Centre

INFORMATION ABOUT THE RESEARCHER

Name : Ismail Ahmed Mohamed Amer

Date of birth : 01 September 1988

Place of birth : Al-Mansoura, Egypt

Last academic degree : Master of Science

Field of specialization : Structural Engineering

University issued the degree : Ain Shams

Date of issued degree : December 2016

Current job : Assistant lecturer

ACKNOWLEDGEMENT

Praise be to ALLAH with the blessings of Whom the good deeds are fulfilled.

I would like to express my deepest thanks and appreciation to my supervisors, Prof. Dr. Mohamed A. Khalaf, Dr. Ahmed Rashad (*Allah bless his soul*), Dr. Mohamed Kohail and Dr. Mohamed S. El-Feky for their valuable assistance, guidance, patience and endless support throughout this research, and reviewing of the manuscript are greatly acknowledged. I am grateful to their all for having the opportunity to work under their supervision.

I would like to thank the technical staff and labors of the laboratory of the properties and testing of materials at the structural engineering Department of Ain Shams University for their distinguished assistance during the experimental work.

I would like to deeply thank my family for their continuous encouragement, overwhelming support, fruitful care and patience, especially during the hard times.

Special thanks to my sons Ahmed, Noran and Seif because I took a lot from their time during writing this thesis.

I cannot express in words my gratitude to my wife, Eng. Eman Ata. She has borne bad times with me and yet encourages and supports me. She is the affective mother of our sons.

STATEMENT

This thesis is submitted to the Faculty of Engineering, Ain Shams University, as a partial fulfillment for the degree of Doctor of Philosophy in Civil Engineering (Structural Engineering). The work included in this thesis was carried out by the author, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Name: Ismail Ahmed Mohamed Amer

Date:

Signature:

PUBLICATIONS ARISING FROM THIS THESIS

I. Amer, M. Kohail, M. S. El-Feky, A. Rashad, and M. A. Khalaf, "A review on alkali-activated slag concrete," Ain Shams Eng. J., vol. 12, no. 2, pp. 1475–1499, 2021.
 https://doi.org/10.1016/j.asej.2020.12.003

 I. Amer, M. Kohail, M. S. El-Feky, A. Rashad, and M. A. Khalaf, "Characterization of alkali-activated hybrid slag/cement concrete," Ain Shams Eng. J., vol. 12, no. 1, pp. 135–144, 2021. https://doi.org/10.1016/j.asej.2020.08.003

3. I. Amer, M. Kohail, M. S. El-Feky, A. Rashad, and M. A. Khalaf, "Evaluation Of Using Cement In Alkali-Activated Slag Concrete," Int. J. Sci. Technol. Res., vol. 9, no. 5, pp. 245–248, 2020. http://www.ijstr.org/paper-references.php?ref=IJSTR-0620-36892

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL DEPARTMENT

Abstract of the Ph.D. Thesis Submitted by Ismail Ahmed Mohamed Amer

ABSTRACT

Concrete manufacturing is believed to be one of the major contributors to global warming, and this is mainly attributed to the use of Portland cement as a binding material. Cement industry is thought to be responsible for about 8% of global CO₂ emission. To reduce the environmental impact of concrete manufacturing, efforts are still going on to find alternatives to Portland cement. Alkali-activated material, a new environmentally friendly inorganic binder derived by alkaline solution activating alumino-silicate source material (such as slag, fly ash and metakaolin), has attracted significant attention in recent years as a practical alternative to Portland cement. In addition to efficient use of industrial by-product, using alkali-activated material as a binder greatly reduces greenhouse gas, CO₂ emissions and energy requirements during its manufacturing.

During the last few years, many studies were conducted over the world to investigate different physical and mechanical characteristics of Alkali-Activated Concrete (AAC) in order to introduce it as an alternative to the traditional Ordinary Portland Cement (OPC) concrete. Most of these studies were conducted on paste and mortar not on concrete and very limited studies used the ambient curing condition for concrete. Moreover, the use of Ground Granulated Blast Furnace Slag (GGBFS) alone as a binder and as a fully

replacement for OPC in concrete was rare; therefore, more studies for Alkali-Activated Slag Concrete (AASC) are still required.

This research work was carried out to investigate experimentally and analytically physical, mechanical and bond characteristics of AASC and compare them with those of similar Conventional Concrete (CC) at ambient temperature and after exposure to elevated temperatures.

Three main phases are included in this research work:

The first phase studied the efficiency of utilizing the hybrid cement (OPC + GGBFS) to produce AAC at ambient curing conditions considering the effect of four important parameters (GGBFS to OPC ratio, Na₂O ratio, solution modulus "Ms" and water to binder ratio "W/B") on both workability and compressive strength using Taguchi method. Microstructure analysis using Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) was performed to investigate the polymerization products. Test results have showed that using alkali activator with hybrid cement (GGBFS + OPC) cannot be considered an effective method to produce AAC due to the very low workability obtained. On the other hand, using GGBFS only as a binder material was effective enough to produce AAC with high compressive strength and suitable degree of workability at ambient curing conditions.

The second phase investigated mechanical and physical characteristics of ambient cured AASC after exposure to elevated temperatures. The effect of temperatures (25, 300, 600 and 900 °C) on the ambient cured AASC and on a similar CC (for a comparison purpose) was investigated by observing the physical and mechanical changes. The effect of using polypropylene fibers on both AASC and CC was also investigated. Test results have showed that the

AASC has achieved higher mechanical properties than similar CC at ambient temperature. Results also have showed that the AASC has a higher resistance to elevated temperatures than the CC due to higher resistance to spalling and cracking. Also, the AASC recorded higher residual mechanical properties after exposure to elevated temperatures.

The third phase was designed to investigate experimentally and analytically the bond behavior between AASC and steel rebars considering some important parameters (rebar diameter and development length to diameter ratio) before and after exposure to elevated temperatures using beam-end bond testing technique. An analytical study was carried out to compare the experimentally obtained results with those obtained from the well-known available equations in the literature and also in the CEB-FIP model code for concrete structures. A modified model was proposed to predict the bond behavior of AASC. Comparison between results calculated from both models (the proposed modified model and the CEB-FIP model) with the experimental results has showed the following:

- The CEB-FIP model provides more conservative values of bond strength than the experimental results which increase the safety level when estimating bond strength for AASC in design purposes.
- The proposed modified model achieved a higher correlation with the experimental results than the CEB-FIP model at ambient temperature.

Keywords: Alkali-Activated Concrete, GGBFS, Alkali Activation, Solution Modulus, Ambient cured, Taguchi method, Mechanical Characteristics, Bond Behavior, Polypropylene Fiber, Elevated Temperature, Beam-end bond testing technique

TABLE OF CONTENTS

ACKNOWLEDGEMENTi
STATEMENTii
PUBLICATIONS ARISING FROM THIS THESISiii
ABSTRACTiv
TABLE OF CONTENTSvii
LIST OF FIGURES xii
LIST OF TABLESxx
ABBREVIATIONSxxii
NOTATIONSxxiv
CHAPTED (1)
CHAPTER (1)
INTRODUCTION1
1.1 Background
1.2 Problem Statement
1.3 Research Objectives
1.4 Thesis Organization6
CHAPTER (2)
LITERATURE REVIEW
2.1 Historical Background
2.2 Environmental Impact of AAC
2.3 Constituents of AAC
2.3.1 General
2.3.2 Alkaline Activators 15
2.3.2.1 General
2.3.2.2 Sodium Hydroxide (NaOH)
2.3.2.3 Sodium Silicate (Na ₂ SiO ₃)
2.3.3 Cementitious Components

2.3.3.1 General
2.3.3.2 GGBFS
2.4 Alkali Activated Slag Concrete (AASC)
2.4.1 Reaction Mechanism
2.4.2 Hydration Products
2.4.3 Mechanical Properties
2.4.3.1 Compressive Strength (CS)
2.4.3.2 Stress – Strain Relationship (SSR)
2.4.3.3 Modulus of Elasticity "E"
2.4.3.4 Poisson's Ratio (PR)
2.4.3.5 Tensile Strength (TS)
2.4.4 Bond Properties
2.4.5 Elevated Temperature Resistance (ETR)
2.5 Summary and Conclusions
2.5.1 Material Properties
2.5.2 Mechanical and Bond Properties
2.5.3 Elevated Temperature Resistance
2.5.4 General and Recommendations
CHAPTER (3)
RESEARCH PROGRAM
3.1 Introduction
3.2 Objectives
3.3 Experimental Study
3.4 Analytical Study
3.5 Test Methodology74
3.5.1 Test Specimens
3.5.1.1 Slump Test
3.5.1.2 Unit Weight Test

3.5.1.3 Compressive Strength Test
3.5.1.4 Flexural Strength Test
3.5.1.5 Ultrasonic Pulse Velocity Test
3.5.1.6 Bond Strength Test
3.5.2 Design of Experiments
CHAPTER (4)
CHARACTERIZATION OF ALKALI ACTIVATED HYBRID
SLAG/CEMENT CONCRETE
4.1 Introduction
4.2 Experimental Program 80
4.2.1 Materials
4.2.2 Test Matrix
4.2.3 Specimens Preparation and Testing
4.3 Results and Discussions
4.3.1 Workability
4.3.2 Compressive Strength
4.3.3 Microstructure Analysis
4.4 Summary and Conclusions
CHAPTER (5)
PERFORMANCE OF ALKALI ACTIVATED SLAG CONCRETE
WITH AND WITHOUT POLYPROPYLENE FIBER EXPOSED TO
ELEVATED TEMPERATURES
5.1 Introduction
5.2 Experimental Program
5.2.1 Materials
5.2.2 Test Matrix
5.2.3 Specimens Preparation and Testing

5.2.4 Heating Regime	112
5.3 Results and Discussions	115
5.3.1 Visual Inspection	115
5.3.2 Unit Weight	118
5.3.3 Compressive Strength	120
5.3.4 Flexural Strength	
5.3.5 Bond Strength	128
5.3.5.1 Analytical Study	131
5.3.5.1.1 Previous Models to Estimate Bond Strength	131
5.3.6 Ultrasonic Pulse Velocity	136
5.3.7 Correlation between the Investigated Properties	138
5.4 Summary and Conclusions	140
CHAPTER (6)	CTEL
INVESTIGATION OF BOND BEHAVIOR OF REINFORCING	STEEL
EMBEDDED IN ALKALI ACTIVATED SLAG CON	CRETE
EMBEDDED IN ALKALI ACTIVATED SLAG CONE	CRETE 142
INVESTIGATION OF BOND BEHAVIOR OF REINFORCING EMBEDDED IN ALKALI ACTIVATED SLAG CON EXPOSED TO ELEVATED TEMPERATURES 6.1 Introduction	CRETE 142 142
EMBEDDED IN ALKALI ACTIVATED SLAG CONEXPOSED TO ELEVATED TEMPERATURES	CRETE 142 142 143
EMBEDDED IN ALKALI ACTIVATED SLAG CONEXPOSED TO ELEVATED TEMPERATURES	CRETE 142 142 143
EMBEDDED IN ALKALI ACTIVATED SLAG CONCEXPOSED TO ELEVATED TEMPERATURES 6.1 Introduction	CRETE 142 143 143 144
EMBEDDED IN ALKALI ACTIVATED SLAG CONEXPOSED TO ELEVATED TEMPERATURES 6.1 Introduction 6.2 Experimental Program 6.2.1 Materials 6.2.2 Test Matrix 6.2.3 Test Specimens	CRETE 142 143 143 144
EMBEDDED IN ALKALI ACTIVATED SLAG CONEXPOSED TO ELEVATED TEMPERATURES 6.1 Introduction 6.2 Experimental Program 6.2.1 Materials 6.2.2 Test Matrix 6.2.3 Test Specimens 6.2.4 Specimens Preparation and Testing	CRETE 142 143 143 144 145
EMBEDDED IN ALKALI ACTIVATED SLAG CONCEXPOSED TO ELEVATED TEMPERATURES 6.1 Introduction 6.2 Experimental Program 6.2.1 Materials 6.2.2 Test Matrix 6.2.3 Test Specimens 6.2.4 Specimens Preparation and Testing 6.2.5 Heating Regime	CRETE 142 143 144 145 148
EMBEDDED IN ALKALI ACTIVATED SLAG CONGEXPOSED TO ELEVATED TEMPERATURES	CRETE 142 143 144 145 154 155
EMBEDDED IN ALKALI ACTIVATED SLAG CONCEXPOSED TO ELEVATED TEMPERATURES 6.1 Introduction	CRETE 142 143 143 145 154 155 157
EMBEDDED IN ALKALI ACTIVATED SLAG CONCEXPOSED TO ELEVATED TEMPERATURES 6.1 Introduction 6.2 Experimental Program 6.2.1 Materials 6.2.2 Test Matrix 6.2.3 Test Specimens 6.2.4 Specimens Preparation and Testing 6.2.5 Heating Regime 6.3 Results and Discussions 6.3.1 Damage due to Elevated Temperatures	CRETE 142 143 144 145 154 157 159