

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University **Faculty of Science Physics Department**

Synthesis and Characterization of Hybrid Nanocomposites as Photocatalyst for Wastewater **Decontamination**

A Thesis Submitted for the degree of Doctor of Philosophy in Science in Physics

By

Reem Mohamed Abd El Kreem

M.Sc. in Physics 2016 To

Department of physics

Faculty of Science - Ain Shams University

Supervised by

Prof. Dr. Mona Mohamed Abd Latif Mohsen

Prof. of Nuclear-Solid State Physics Faculty of Science, Ain Shams University

Dr. Mohamed Eid Mohammed Ali Prof. Dr. Ehsan Abdel Haleem Ahmed Gomaa

Professor of Nuclear Physics, Faculty of

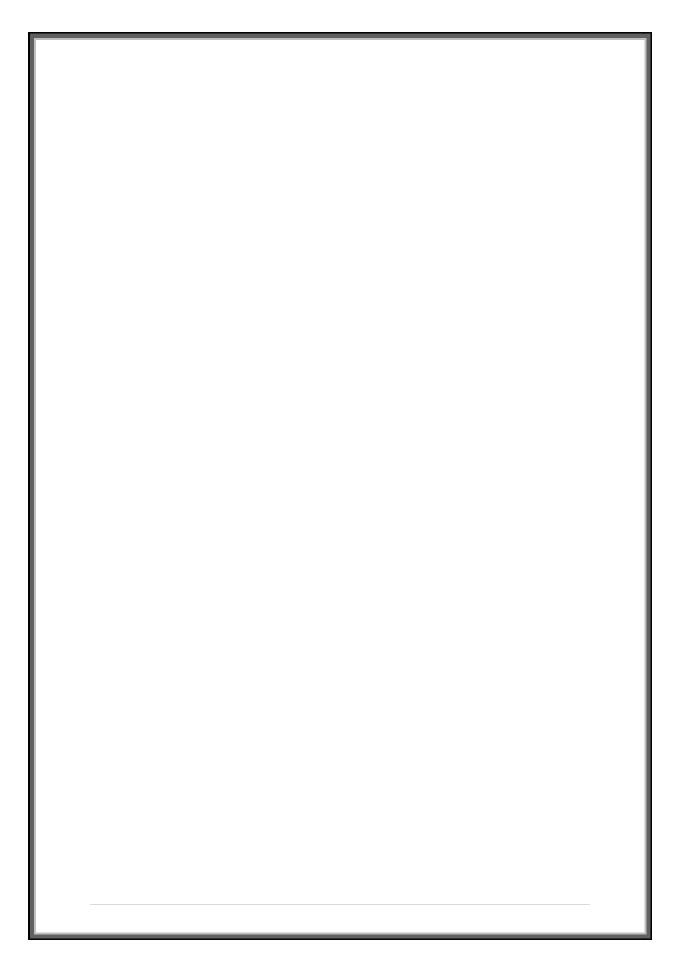
Science, Ain Shams University

Associate Prof. of Water Chemistry

Water Pollution Research Department, National Research Center

2021

Ain Shams University Faculty of Science Physics Department


APPROVAL SHEET

Title of the Thesis

Synthesis and Characterization of Hybrid Nanocomposites as Photocatalyst for Wastewater Decontamination

Name of the candidate
Reem Mohamed Abd El Kreem

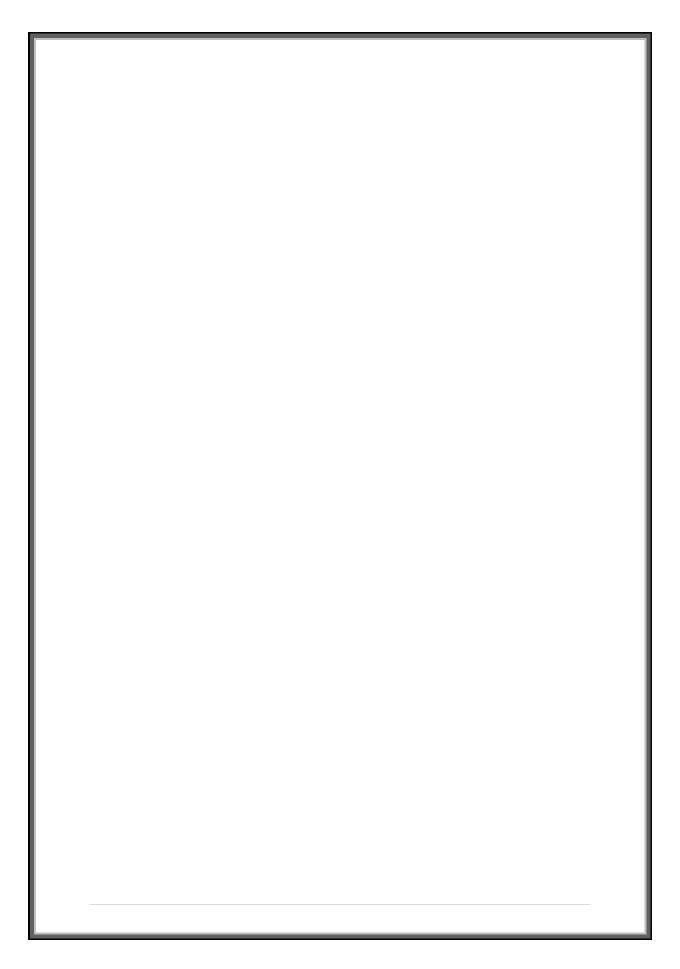
<u>Supervisors</u>	(Signature)
Prof. Dr. Mona Mohamed Mohsen	()
Prof. of Nuclear-Solid State Physics, Faculty of Science - Ain Shams Univ	ersity.
Prof. Dr. Ehsan Abdel Haleem Ahmed Gomaa	()
Prof. of Nuclear Physics, Faculty of Science, Ain Shams University.	
Dr. Mohamed Eid Mohammed Ali	()
Associate Prof. of Water Chemistry, Water Pollution Research Department,	National Research Centre.
Examiners	
Prof. Dr. Mona Mohamed Mohsen	()
Prof. of Nuclear-Solid State Physics, Faculty of Science - Ain Shams Un	iversity.
Prof. Dr. Ehsan Abdel Haleem Ahmed Gomaa	()
Prof. of Nuclear Physics, Faculty of Science, Ain Shams University.	
Prof. Dr. Miriam Rafailovich	()
Prof. of Materials Science and Chemical Engineering, Stony Brook Univ	versity, New York.
Prof. Dr. Hanan Ibrahim	()
Prof. of Inorganic Chemistry, National Research Center.	

Ain Shams University Faculty of Science Physics Department

Name: Reem Mohamed Abd El Kreem

Degree: Ph.D.

Department: Physics


Faculty: Science

University: Ain Shams University

Graduation Date: 2011

Registration Date: 2017

Grant Year: 2021

Acknowledgment

Praise God, Allah, who directed me to do this job, and without Allah's guidance, I could not have done it.

I wish to express my deep thanks and gratitude to **Prof. Dr. Mona**Mohamed Mohsen, professor of Nuclear-Solid State physics at the Physics

Department, Faculty of Science, Ain Shams University, for her supervision, fruitful discussions, reviewing of the manuscript and guidance, which had a major impact in the completion of this work.

I would like to express my deep gratitude to **Prof. Dr. Ehsan Abd El Haleem Gomaa**, **professor of Nuclear physics** at the **Physics Department**, **Faculty of Science**, **Ain-Shams University**, for her supervision, great efforts, and continuous help during the preparation of this thesis.

It is my pleasure to express deep gratitude and sincere appreciation to **Dr.**Mohamed Eid Mohammed Ali, Associate Prof, at the Water Pollution

Research Department, National Research Centre, for his supervision,
excellent guidance, numerous valuable suggestions and discussions, and
encouragement during the experimental work.

I wish to express my deep thanks to my father, my mother, and my sisters (Doaa, Marwa, Raghda, and Shrook) and my best friends (Sara, Manner, Aya, Hadeel, and Amina).

I'm very grateful to **Prof Dr. Nabila Amar** and **Dr. Shaimaa Mohammed**, **National Research Center** for their help, encouragement and wishes.

Table of Content

Section	Subject	Page no
	Acknowledgment	i
	Table of Content	ii
	List of Figures	viii
	List of Tables	xiv
	List of Abbreviation	xvi
	Abstract	xviii
1	Chapter One	1
	Introduction & Literature Review	
1.1	Introduction	1
1.2	Literature Review	4
1.3	Aim of Work	12
2	Chapter Two	14
	Theoretical Background	
2.1	Semiconductor Materials	14
2.2	Effect of radiation on Semiconductor	14
2.3	Heterogeneous Photocatalysis	15
2.4	Mechanism of Photocatalytic reactions	16
2.5	ZnO as Photocatalyst	18
2.6	Physical Properties of ZnO	19
2.7	Surface Area Measurements	19
2.8	Optical Properties	22
2.9	Kinetic for Degradation	25
3	Chapter Three	28
	Experimental work	

3.1	Materials and Reagent	
3.2	Photocatalysts Preparation Method	29
3.2.1	Preparation of ZnO Nanorods	29
3.2.1.1	Conventional Hydrothermal Method	29
3.2.1.2	Microwave Preparation Method	30
3.2.2	Preparation of CuS Nanoparticles (NPs) and CuS-ZnO	31
	Hybrid Nanocomposites Photocatalysts	
3.2.2.1	Preparation of CuS Nanoparticles	31
3.2.2.2	Preparation of CuS-ZnO Hybrid Nanocomposite:	32
3.2.3	Synthesis of MoS ₂ nanosheets, and MoS ₂ -ZnO Hybrid	33
	Nanocomposites	
3.2.3.1	Synthesis of MoS ₂ Nanosheets	33
3.2.3.2	Synthesis of MoS2-ZnO hybrid Nanocomposites	34
3.3	Simulated Wastewater	35
3.3.1	Simulated Industrial Dyes Wastewater	35
3.3.2	Simulated Industrial Pharmaceutics Wastewater	35
3.3.3	Simulated Industrial Pesticides Wastewater	36
3.3.4	Solutions Preparation	36
3.3.5	Preparation of Scavengers	36
3.3.6	Preparation of Inorganic Ions	36
3.4	Characterization of the prepared Photocatalysts	37
3.4.1	Structure Analysis	37
3.4.1.1	X-ray Diffraction (XRD)	37
3.4.1.2	FT-IR Structure Analysis	38
3.4.2	Morphological and Elemental Analysis	38
3.4.3	Transmission Electron Microscope	39
3.4.4	Spectroscopy Analysis	40

3.4.4.1	Spectrophotometric Measurements	
3.4.4.2	Photoluminescence (PL)	41
3.4.5	Surface Area Measurements	42
3.5	Evaluation of photocatalytic activity	42
3.5.1	Photocatalytic Experiments for Treatment Of Industrial	42
	Wastewater	
3.5.2	Analytical Measurements	43
3.5.3	Factors Affecting the Degradation Process	44
3.5.3.1	Effect of Initial Concentration	45
3.5.3.2	Effect of PC Load	45
3.5.3.3	Effect of pH of The Solution	45
3.5.3.4	Effect of scavengers	45
3.5.4	Hydroxyl Radical Formation	45
3.5.5	Effect of Salinity	46
3.5.6	Effect of Humic Acid	46
3.5.7	Effect of Inorganic Ions on The Degradation Process	46
3.5.8	Reusability of Different Photocatalyst	47
3.6	Kinetic Studies	47
4	Chapter Four	48
	Results and Discussion	
4.1	Part one	48
4.1.1	Weight Yield	49
4.1.2	XRD results	49
4.1.3	Structure and Morphology Analysis	50
4.1.3.1	Scanning Electron Microscope	50
4.1.3.2	Energy Dispersive x-ray Diffraction (EDX):	50
4.1.3.3	TEM Results	52