

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

HYDROCARBON POTENTIALITY IN ABU SENNAN BLOCKS, WESTERN DESERT, EGYPT

Presented by

Ghada Hassan Farrag Kenawy

Thesis Submitted to Faculty of Science, Ain Shams University for partial fulfillment Ph.D. Degree in Science (Geology)

Supervised by

Prof. Ali Mohamed Ali Abd-Allah
Professor of Structural Geology,
Faculty of Science, Ain Shams University

Prof. Ahmed Sobhy Helaly
Professor of Geophysics,
Faculty of Science, Ain Shams University

Dr. Ali Mohamed Ali Bakr
CEO of ROCKSERV for Petroleum
Service Company

Dr. Osama Mohamed El-Naggar Assistant Professor of Core Analysis, Egyptian Petroleum Research Institude (EPRI) Mr. Sherif El-Shahawy El-Sayed
General Manager Assistant, Exploration,
General Petroleum Company
(GPC)

APPROVAL SHEET FOR SUBMISSION

Thesis Title: "Hydrocarbon potentiality in Abu Sennan blocks, Western Desert, Egypt"

Name of candidate: Ghada Hassan Farrag Kenawy

This thesis has been approved for submission by the supervisors:

1- Prof. Ali Mohamed Ali Abd-Allah

Professor of Structure Geology, Geology Department, Faculty of Science, Ain Shams University

2- Prof. Ahmed Sobhy Helaly

Professor of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University

3- Dr. Ali Mohamed Ali Bakr

CEO of ROCKSEV for Petroleum Service Company

4- Dr. Osama Mohamed Sayed El-Naggar

Assistant Professor of Petrophysics and Core Analysis, Egyptian Petroleum Research Institude (EPRI)

5- Mr. Sherif El-Shahawy El-Sayed Mustafa

General Manager of External Operation Department, General Petroleum Company (GPC)

Prof. Dr. Karim Wageeh Morkous

Head of the Geology Department
Faculty of Science-Ain Shams University

ACKNOWLEDGMENTS

The author would like to express all appreciation to supervisors, **Prof. Ali** Abd-Allah, **Prof. Ahmed Helaly, Dr. Ali Bakr, Dr. Osama El-Naggar and Mr.** Sherif El-Shahawy for their great guidance, advice, motivation, and cooperation throughout the entire work.

Also, the most grateful thanks to **Prof. Ashraf Baghdady**, Vice Dean for Education and Student Affairs, Faculty of Science, Ain Shams University for his effort and guidance in sedimentary facies analysis work.

My sincere thanks to the Geology Department, Faculty of Science, Ain Shams University for support and facilitates.

The Author gratefully acknowledges the General Petroleum Company (GPC) and (EGPC) for providing the geological and geophysical data necessary to achieve this work. Moreover, great appreciation to Mr/ Alaa El-Batal and Mr/ Osama Farouk, previous EGPC Exploration Assistant for their privilege of involving the new acquired 3D PSDM in the study.

Special thanks to Mr. Zakariya Abdel Kader Hassan, Geologist in British Petroleum Company (BP) for his help and guidance in petrel modelling. As well as Eng. Ahmed Ghanima, Petrophysicist in Shell Petroleum Company for his valuable guidance in well logging work.

Thanks also to my colleagues in the General Petroleum Company especially Mr. Said Ali, Mr. Ashraf Abdel Moniem and Mr. Sherif Abdel Moniem for their help and support.

Finally, I dedicate this work to my family

Abstract

The Abu Sennan block as a part of Abu Gharadig basin is producing hydrocarbon from Upper Cretaceous reservoirs in the three block partitions: SWS, GPT and GPY. Several attemps to explore the deep Masajid, Alam El-Buieb and Alamien reservoirs, but they are failed and considered as dry wells, except one. The main objective of the present work is to study the hydrocarbon potentiality of the deep Jurassic and Early Cretaceous reservoirs (Masajid, Alam El-Buieb, and Alamien), in addition to early Late Cretaceous reservoirs (Bahariya and Abu Roash "G"). The work permits the chance to evaluate the structural model postulating from the seismic and gravity interpretation. Lack of core data for the deep reservoirs only permits interpretation, the depositional facies, and reservoir characterization of the shallow targets (Bahariya and Abu Roash "G"). The structural configuration of the Abu Sennan area output from the structural contour maps and seismic structural attributes, it is represented by a group of en'echelon normal faults having the NE-SW orientation. These faults were intersected by NW-SE normal faults that were formed in the Early Cretaceous time. Five segments are identified along the Jurassic half graben. During Late Cretaceous-Middle Eocene time, the en'echelon normal faults suffered positive structural differential inversion along the Jurassic fault segments. The flattened seismic line perpendicular to the half graben at both Dabaa, Khoman and Abu Roash "C" horizons shows the inversion pulses associated with a clear onlap sediments on the top of both Khoman Formation and Abu Roash "C" Member. Some stratigraphic attributes were done for the Alamien/Bahariya levels, which are not conclusive owing to the carbonate facies and data deterioration.

The Bahariya and Abu Roash "G" units are the main oil/gas productive reservoirs. Petrophysically, the Middle Bahariya Formation is a heterogeneous reservoir in the NES-2 well in terms of four flow units with different capabilities are involved. Reservoir performance would be different among the contained

microport, mesoport, macroport, and megaport flow units. Mainly the reservoir production would be megaport flow unit that controlled among the other units as it is the prevailing unit. While the Abu Roash "G" Member is a heterogeneous reservoir in terms of three flow units with different capabilities are involved. Reservoir performance would be different among the contained microport, mesoport, and macroport flow units. The petrographical description of both units confirmed the presence of these flow units.

The analysis of the organic-rich shales of the Jurassic Khatatba Formation, as the most significant potential source rock, shows that there are many Jurassic sub-basins sources for hydrocarbon supply for the deep reservoirs, their capabilities different from so weak in the southwest (SWS field) to high capable in the northeast (GPY-GPT fields). Distance between the basin source and the amount and direction of migration control also the accumulation of hydrocarbons in closures. The fault seal/leak facilities and reservoir qualities are explained the failure occurred by the Jurassic drilled wells. Therefore, it is better to explore the deep reservoirs in the GPY field as a priority, the GPT field as a second priority, and then the SWS field.

List of contents

Approval sheet for submission	II
Acknowledgments	III
Abstract	IV
List of contents	VI
List of figures	XI
List of tables X	XXIII
Chapter 1: Introduction	1
1.1 Location of the studied area	3
1.2 objective and data base	4
1.3 Exploration history	6
1.4 Previous work of the Abu Gharadig basin	10
1.5 Sedimentary basins in North Western Desert	14
1.5.1 Paleozoic basin	14
1.5.2 Jurassic basin	15
1.5.3 Cretaceous basin	15
1.5.4 Lower-Middle Eocene basin	19
1.5.5 Upper Eocene-Oligocene basin	19
1.6 Stratigraphy of the Western Desert	20
1.7 Jurassic-early Late Cretaceous stratigraphy of the Abu Sennan are	a 26
Chapter 2: Interpretation and structural analysis	40
2.1 Introduction	40
2.2 Seismic exploration data base	40
2.2.1 Seismic data processing	42
2.2.2 Seismic data interpretation	42
2.2.3 Methodology	42

2.3 Structural analysis and interpretation	51
2.4 Tectonic setting and basin inversion	55
Chapter 3: Seismic attributes	63
3.1 Introduction	63
3.2 Seismic attribute classification	63
3.2.1 Structural seismic attribute	64
A. Variance attribute	64
B. Ant-track process	68
C. 3D curvature attribute	70
3.2.2 Stratigraphic seismic attribute	71
A. Iso-frequency component attribute	71
B. RMS amplitude attribute	73
Chapter 4: Sedimentary facies analysis	79
4.1 Materials and methods	79
4.2 Microfacies and petrographic aspects	85
4.2.1 Bahariya facies associations	86
A. Lower Bahariya facies associations	86
B. Middle Bahariya facies associations	88
C. Upper Bahariya facies associations	94
4.2.2 Abu Roash "G" facies associations	101
A. Lower Abu Roash "G" facies associations	101
B. Middle Abu Roash "G" facies associations	104
C. Upper Abu Roash "G" facies associations	106
4.2.3 Diagenetic process	
A. Dissolution/precipitation	111
B. Cementation	112
C. Neomorphism	115

4.3 Porosity evaluation and petrography	
4.4 Tectonics and sedimentation	118
Chapter 5: Reservoir characterization	131
5.1 Petrophysical evaluation of core samples	132
5.1.1 Porosity	133
A. Factors governing magnitude of porosity	134
B. Classification of rock porosity	134
5.1.2 Permeability	135
A. Factors governing magnitude of permeability	136
B. Classification of rock permeability	136
C. Types of rock permeability	136
5.1.3 Material and methods	137
A. Plug drilling	137
B. Plug cleaning	137
C. Plug drying	138
D. Laboratory measurements of porosity	138
E. Laboratory measurements of permeability	139
5.1.4 Location of studied samples	140
5.1.5 Porosity-permeability overview	140
5.1.6 Porosity and permeability results of the studied samples	141
5.1.7 Porosity relations and reservoir assessment	143
A. Porosity/permeability relations	143
B. Permeability heterogeneity	145
C. Reservoir zonation and properties	146
C.1 r35	146
C.2 Apex	149
C.3 Flow unit contribution to flow capacity	151
C.4 Turbulence factor	152

C.5 Reservoir Quality Index	155
C.6 Calculated pore throat radii of the studied samples	156
5.1.8 Petrography	159
5.1.9 Pore system versus petrographic appearance	161
5.1.10 Distribution of petrophysical parameters against depth	163
5.2 Well log evaluation	167
5.2.1 Pre-reservoir log computations	167
A. Composition of Jurassic-early Late Cretaceous reservoirs	167
B. Clay parameters	171
C. Formation water resistivity, cementation factor and saturation exponent	178
5.2.2 Reservoir log evaluation	180
A. Shale volume calculation	181
B. Computation of effective porosity	183
C. Computation of permeability	187
D. Determination of the water saturation	193
E. Net pay estimation	195
5.2.3 Summery of petrophysical analysis results of Jurassic-ealy Late Cretaceous reservoirs	195
A. Reservoirs of deeper horizons	195
B. early Late Cretaceous reservoirs	200
Chapter 6: Hydrocarbon potentialities and risk analysis	211
6.1 Source rocks	211
6.2 Petroleum generation/migration	213
6.3 Jurassic-early Late Cretaceous reservoirs	
6.4 Seals	225
6.5 Trap	236
6.6 Failure analysis of drilled exploration deep reservoirs wells	239

6.6.1 Abu Sennan-1 well	240
6.6.2 HF35/1 well	242
6.6.3 JUR-1x well	244
6.7 Risk/uncertainties assessment while reserve estimation	244
6.7.1 Cretaceous reservoirs reserve	249
A. Reserve of the development blocks	249
A.1 Region 2 (GPY block)	252
A.2 Region 8 (GPT block)	258
A.3 Region 10 (NEST block)	265
A.4 Region 11 (NES block)	270
A.5 Region 12 (SWS and SES block)	276
A.6 Region 14 (HF35 block)	287
B. Reserve of the proposed exploration blocks	283
B.1 GPY field (regions 3, 5, 6 and 7)	283
B.2 GPT field (region 9)	289
6.7.2 Deep reservoirs reserve	290
A. Masajid reservoir target block	29:
B. Alam El-Buieb reservoir target block	29
6.8 Highlights in the Abu Sennan basin analysis	313
Chapter 7: Conclusions and recommendations	31
- Recommendations	32
References	320
Appendix-I	I
Arabic Summery	1

List of figures

CHAPTER-1		
Fig. 1.1	Sedimentary basins in the North Western Desert, and the location of the study area in relation to the sedimentary basins.	2
Fig. 1.2	Location map of the Abu Sennan area showing oil fields (SWS, GPT and GPY).	4
Fig. 1.3	Tectono-stratigraphic column of the Western Desert Desert (modified after Wescott <i>et al.</i> , 2011).	21
Fig. 1.4	Generalized stratigraphic successions of Abu Sennan area, North Western Desert.	27
Fig. 1.5	Generalized stratigraphic succession of the Jurassicearly Late Cretaceous sediments encountered in Abu Sennan area.	28
Fig. 1.6	NE-SW correlation chart showing the lateral facies of the Khatatba, Masajid, Alam El-Buieb and Alamien formations in the Abu Sennan area.	30
Fig. 1.7	NE-SW correlation chart showing the lateral facies and thickness ariations of the Alamien and Dahab formations in the Abu Sennan area.	33
Fig. 1.8	NE-SW correlation chart showing the lateral facies and thickness variations of the Kharita Formation in the Abu Sennan area.	34
Fig. 1.9	NE-SW correlation chart showing the lateral facies and thickness variations of the Bahariya formation in the Abu Sennan area.	36
Fig. 1.10	Isopach contour map of the Bahariya Formation showing its thickness variation in the Abu Sennan area.	37
Fig. 1.11	NE-SW correlation chart showing the lateral facies and thickness variations of the Abu Roash "G" Member in the Abu Sennan area.	38
Fig. 1.12	Isopach contour map of the Abu Roash "G" Member showing its thickness variation in the Abu Sennan area.	39
	CHAPTER-2	
Fig. 2.1	3D seismic survey (PSDM) covered the Abu Sennan area, processed by CGG company 2018/2019.	41
Fig. 2.2	Thirty 2D seismic survey covered the Abu Sennan area.	41
Fig. 2.3	Synthetic generation of the Jurassic HF35/1 well.	45

CHAPTER-2		
Fig. 2.4	(a) Variance depth slice versus (b) top Cretaceous (Khoman) depth picking. Excellent matching for the strikes of both Jurassic and Cretaceous faults.	46
Fig. 2.5	Depth structural map of the Masajid horizon in the Abu Sennan area.	46
Fig. 2.6	Depth structural map of the Alam El-Buieb horizon in the Abu Sennan area.	47
Fig. 2.7	Depth structural map of the Alamien horizon in the Abu Sennan area.	47
Fig. 2.8	Depth structural map of the Bahariya horizon in the Abu Sennan area.	48
Fig. 2.9	Depth structural map of the Abu Roash "G" horizon in the Abu Sennan area.	48
Fig. 2.10	Depth structural map of the Abu Roash "C" horizon in the Abu Sennan area.	49
Fig. 2.11	Depth structural map of the Khoman horizon in the Abu Sennan area.	49
Fig. 2.12	Depth structural map of the Apollonia horizon in the Abu Sennan area.	50
Fig. 2.13	Depth structural map of the Dabaa horizon in the Abu Sennan area.	50
Fig. 2.14	(a) Top Jurassic Masajid and (b) Cretaceous Abu Roash "G" structural depth maps showing fault pattern and segments.	52
Fig. 2.15	NE-SW seismic line passing parallel to the main Jurassic half graben to represent the hanging/footwalls, (a) represent the footwall while (b) represent the hanging wall.	53
Fig. 2.16	NW-SE seismic lines perpendicular to each segment for the strike of the Jurassic half graben.	54
Fig. 2.17	3D structural model of the Masajid Formation, with two wells catched its top part (HF35/1 and JUR-1x).	54
Fig. 2.18	3D structural model of the Alam El-Buieb Formation, with two well catched its bottom part (HF35/1 and JUR-1x) and one well catched its top part (Abu Sennann-1).	55
Fig. 2.19	3D structural model of the Bahariya Formation, with wells reached its bottom part.	56
Fig. 2.20	3D structural model of the Abu Roash "G" Member, with wells reached its bottom part.	56