

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

ENVIRONMENTAL AND GENETIC EVALUATION IN 46, XY DISORDERS OF SEX DEVELOPMENT

Submitted By Shereen Adel Abdelkader Sayed

M.B.B.Ch., Faculty of Medicine, Cairo University, 2004 Master in Clinical & Chemical Pathology, Faculty of Medicine, Cairo University, 2015

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences

Department of Environmental Medical Sciences
Institute of Environmental Studies and Research
Ain Shams University

2021

APPROVAL SHEET ENVIRONMENTAL AND GENETIC EVALUATION IN 46, XY DISORDERS OF SEX DEVELOPMENT

Submitted By Shereen Abdel Abdelkader Sayed

M.B.B.Ch., Faculty of Medicine, Cairo University, 2004 Master in Clinical & Chemical Pathology, Faculty of Medicine, Cairo University, 2015

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences
Department of Environmental Medical Sciences

This thesis was discussed and approved by:

The Committee

Signature

1-Prof. Dr. Mostafa Hassan Ragab

Prof. of Environmental Medicine, Department of Environmental Medical Science
Institute of Environmental Studies & Research
Ain Shams University

2-Prof. Dr. Alaa Khalil Kamel

Prof. of Human Cytogenetics National Research Center

3-Prof. Dr. Mohamed Saleh El-Din Mostafa

Prof. of Public Health Faculty of Postgraduate of Childhood Studies Ain Shams University

4-Prof. Dr. Amal Mahmoud Mohamed

Prof. of Human Cytogenetics National Research Center

2021

ENVIRONMENTAL AND GENETIC EVALUATION IN 46,XY DISORDERS OF SEX DEVELOPMENT

Submitted By Shereen Adel Abdelkader Sayed

M.B.B.Ch., Faculty of Medicine, Cairo University, 2004 Master in Clinical & Chemical Pathology, Faculty of Medicine, Cairo University, 2015

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences
Department of Environmental Medical Sciences
Under The Supervision of:

1-Prof. Dr. Mostafa Hassan Ragab

Prof. of Environmental Medicine, Department of Environmental Medical Science Institute of Environmental Studies & Research Ain Shams University

2-Prof. Dr. Hala Ibrahim Awad Allah

Prof. of Environmental Medicine & Community Head of Department of Environmental Medical Sciences Institute of Environmental Studies & Research Ain Shams University

3-Prof. Dr. Alaa Khalil Kamel

Prof. of Human Cytogenetics National Research Center

4-Prof. Dr. Inas Mohamed Mazen

Prof. of Chemical Genetics National Research Center

Acknowledgement

First of all, great thanks to **ALLAH** who is most merciful, for all the countless gifts I have been offered. My endless gratitude to the **patients' families**, for their cooperation.

I would like to express my endless gratitude and sincere appreciation to *Prof. Moustafa Hassan Ragab* for valuable instructions, generous help, unlimited support and effort to get best out of this work.

My sincere thanks to *Prof. Hala Ibrahim Awadallah* for her continuous guidance and supervision throughout the work.

I would like to express my sincere gratitude and deepest appreciation to *Prof. Alaa Khalil Kamel* for her instructive supervision, encouragement, remarkable guidance throughout the course of this work.

I would like to express my sincere gratitude and deepest appreciation to *Prof. Inas Mohamed Mazen* for her instructive supervision and scientific support throughout the course of this work.

I would like to express my sincere thanks and deepest appreciation to *Prof. Mona Kamal Mekkawy* for her keen supervision, help and remarkable guidance throughout the course of this work.

My endless thanks and gratitude to *Prof. Ola Mohamed Eid* for her valuable suggestions and keen supervision throughout the work.

Last, but not least, I would like to thank *my family*, for their actual help and support received in many ways.

Abstract

Background: Disorders/Differences of Sex Development (DSD) are congenital medical conditions in which the external appearance of the individual does not coincide with the chromosomal constitution or the gonadal sex. 46,XY disorders of sex development (46,XY DSD) are clinically and genetically heterogeneous group that lead to genital abnormalities at birth, during puberty and in adulthood. Genetic and environmental factors play an important role in development of 46,XY DSD. The phenotype of patients with (DSD) is usually presented by a broad clinical spectrum ranging from genital ambiguity to phenotypes that appears normal, it can be diagnosed at wide range of ages, from neonatal period to late adulthood. The aim of the study is to evaluate the role of Multiplex Ligation dependent Probe Amplification (MLPA) technique in diagnosis of 46,XY DSD patients and to correlate genotypic abnormalities with the clinical phenotype and study possible correlation of paternal and maternal exposure to environmental risk factors to the causation of their phenotype.

Methods: The study was carried out on 35 patients selected from a total of 225 DSD patients referred to the Endocrinology and DSD Clinic at National Research Centre over a period of 3 years. Patients presented with variable presentations of disorders of sex development presenting with ambiguous genitalia, hypospadias, or with female phenotype with primary amenorrhea. Clinical personal, family history and thorough clinical examination were done with special emphasis on the appearance of external genitalia. Parents were asked to fill a questionnaire about frequency of dealing with some environmental factors including smoking, drugs and some other materials having estrogenic effect as plastics, insecticides, and others. Conventional cytogenetics studies and

fluorescence in situ hybridization (FISH) on peripheral blood as well as DNA extraction and Multiplex Ligation-dependent Probe Amplification (MLPA) were done using two kits including specific sex determination genes and genes for gonadal development disorder.

Results: In the current study parental consanguinity was detected in 60% of patients. Associated congenital abnormalities were detected in 14% of patients. Sixty nine percent of patients were in neonatal and childhood period, while 31% of patients were in pubertal and adult stage. Maternal exposure during pregnancy and paternal exposure to various Endocrine Disrupting Chemicals (EDCs) were insignificantly associated with DSD compared to control cases. Only 46,XY DSD cases were included in this study, however, 3 patients showed structural chromosomal abnormalities. MLPA analysis showed a clinically significance CNVs in 11% in the form of deletion in *SOX9 gene* in 2 patients, deletion in *DMRT1 gene* in 1 patient and duplication in *HSD17B3 gene* of unknown significant in 1 patient.

Conclusion: This study demonstrates the importance of proper detection of copy number variation (CNV) areas in DSD patients. It was concluded that using MLPA is recommended for DSD cases but it should be complemented with another high-resolution techniques as array comparative genomic hybridization or whole exome panel for DSD sequencing for whole genome coverage to detect unidentified genomic abnormalities.

Keywords: Disorders of Sex Development, Multiplex Ligation-dependent Probe Amplification, Copy Number Variation.

List of contents

List of Abbreviations		II
List of Figur	es	IV
List of Tables		V
Abstract		1
Introduction	ı	3
Review of lit	erature	6
Chapter I	Normal sexual development	6
Chapter II	The genetic basis of sex determination	11
Chapter III	Disorders of sex development	22
Chapter IV	Possible environmental risk factors in 46,XY DSD	35
Chapter V	Genetic work up for 46,XY DSD	44
Patients and methods		54
Results		67
Discussion		83
Conclusion and recommendations		100
Summery		101
References		104
Appendix		132

List of Abbreviations

AMH	Anti-Mullerian hormone		
ATX	Alpha Thalasemia X chromosome		
AZF	Azoospermia factor of the human male Y chromosome		
BMP15	Bone morphogenetic protein 15 gene		
CAIS	Complete androgen insensitivity syndrome		
CDY	Chromatin structure changing		
CMPD	Campomelic dysplasia		
CT	Computerized topography		
DAX1	Dosage-sensitive sex reversal, adrenal hypoplasia critical		
DIANI	region on chromosome X gene 1		
DDS	Dose dependent sex reversal		
DHT	Dihydrotestosterone		
DIAPH	Homolog of drosophila Diaphanous gene		
DMRT	Doublesex and Mab-3-related transcription factor		
DSD	Disorders of sex development		
FISH	Fluorescence insitu hybridization		
FOXL	Forkhead box L gene		
GB	Gonadoblastoma		
GCT	Germ cell tumour		
GD	Gonadal dysgenesis		
GTG	Giemsa trypsin banding		
HCG	Human chorionic gonadotropin		
HSFY	Heat shock transcription factor Y		
LH	Lutenizing hormone		
MIS	Mullerian inhibitory substance		

MRI	Magnetic resonance imaging
MSY	Male specific region of the Y chromosome
NR0B1	Nuclear receptor super family
NRY	Non-recombining Y region
PAR	Pseudo-autosomal region
PAIS	Partial androgen insensitivity syndrome
POF	Premature ovarian failure
RBMY	RNA binding motif Y chromosome
SCMY	Selected mouse cDNAinAZFb region on Y-chromosome
SF-1	Streroidogenic factor 1
SHOX	Short stature homeoboxgene
SOX9	SRY-box containing gene 9
SRY	Sex determining region of Y chromosome
SRA	Autosomal sex reversal
TSPY	Testis-specific protein Y-encoded
TS	Turner syndrome
TDF	Testis determining factor
UTY	Ubiquitous tetracopeptide Y
WT1	Wilm'stumour gene
XIC	X inactivation center
XIST	X- inactive specific transcript gene
ZFY	Zinc finger Y

List of figures

Figure	Title	Page
1	Development of male and female internal genitalia	10
2	Development of male and female external genitalia.	10
3	Functional map of the Y chromosome	13
4	Mapping of X chromosome	21
5	Role of genes and hormones in gonadal development	21
6	Algorithm for DSD case evaluation	53
7	Zeiss Axio Plan Microscope (Zeiss, LePecq, France	56
8	MLPA technique	60
9	Thermocycler program for the MLPA reaction	65
10	Conventional GTG banded karyotype of case no (3)	77
11	Conventional GTG banded karyotype of case no (30)	78
12	Conventional GTG banded karyotype of case no (18)	78
13	FISH using LSI SRY/X centromere probe	79
14	FISH using subtelomere Xp,Yp/ CEPX probe	79
15	FISH using subtelomere 9p22-23/ subtelomere 9q34 probe	80
16	Partial deletion of SOX9 gene	80
17	Deletion of SOX9 gene	81
18	Partial deletion of <i>DMRT1</i> gene	81
19	Partial duplication of HSD17B3 gene	82
20	Grades of Quigley scoring	132

List of tables

Number	Table	Page
1	Genes involved in testicular formation	18
2	Classification of disorders of sex development modified by Hughes et al,2006	23
3	Abnormalities in genes involved in 46,XY DSD	32
4	General Characteristics of the studied patients	68
5	Frequency paternal exposure with some sources of EDCs	74
6	Frequency of dealing of mothers with some sources of EDCs	76

Introduction

Differences/ Disorders of sex development (DSD) is a revised term (*Johnson et al.*, 2017) as disorders of sex development; it is a group of heterogeneous conditions with diverse pathophysiology. They are generally characterized by an abnormality of the chromosomal, gonadal or phenotypic features that typically define sex development. Such conditions usually present with atypical genitalia in the newborn period or as delayed puberty in an adolescent or present later in life as infertility (*Hughes et al.*, 2008).

A number of genes contribute both early and late to the process of sex determination and differentiation. *SRY*, located on the Y short arm proved to be the testes determining gene; however, several autosomal genes act in association with *SRY* contribute to normal development of male phenotype as *SOX9*, in which its expression is augmented by the action of *SRY* and NR5A1 together. Then, during testicular development anti-Mullerian hormone (AMH) production is regulated with help of *DMRT1* to repress genes such *as WNT4 and FOXL2* which are involved in ovarian development (*Wilhelm et al., 2007*).

DSD affection ranges from neonatal period to adulthood with various phenotypes and severity ranging from atypical genitalia to male or female normal external genitalia. Yet, it is often difficult to provide patients with DSD with a definite molecular diagnosis due to great clinical heterogeneousity. Genetic testing is recognized as a key element in the investigation of individuals with a suspected DSD. The first line investigation of a possible DSD includes karyotype and FISH analysis, which is crucial when there is uncertainty about sex assignment, and important guide for management (*Schober et al, 2012*). Second line of investigation includes newer technologies as Multiplex Ligation-dependent Probe Amplification (MLPA) technique and array comparative