

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

High versus Low Dose Caffeine as Respiratory Stimulant in Preterm Infants

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

By

Eslam Mohamed Ali Mazrou

Masters degree- Faculty of Medicine Ain Shams University (2018)

Under supervision of

Prof. Ola Galal Badr El-Deen

Professor of Pediatrics Faculty of Medicine Ain Shams University

Dr. Yasmin Aly Farid Mohamed Aly

Lecturer of Pediatrics Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Ola Galal Badr El-Deen**, Professor of Pediatrics - Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Yasmin Ally Farid Mohamed Ally,** Lecturer of Pediatrics,

Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Eslam Mohamed Ali Mazrou

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	iv
Introduction	1
Aim of the Work	5
Review of Literature	
Overview of Apnea of Prematurity (AOP)	6
Caffeine Therapy in Preterm Infants	27
Patients and Methods	56
Results	62
Discussion	79
Summary	90
Conclusion	
Recommendations	95
References	96
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Socio-demographic characters and hi among cases treated with low and dose Caffeine.	high
Table (2):	Comparison of success rate bet studied groups	
Table (3):	Apnea frequency between low and dose caffeine-treated groups	_
Table (4):	Comparison of mean gestational according to treatment outcome ar studied groups.	mong
Table (5):	Comparison of anthropom measurements between studied groups	
Table (6):	Comparison of heart rate between stugroups and change during follow periods	up
Table (7):	Comparison of random blood glubetween studied groups and change dufollow up periods	aring
Table (8):	Comparison of feeding intolerance seizures between studied groups	
Table (9):	Comparison of systolic blood president between studied groups and change defollow up periods	aring
Table (10):	Comparison of diastolic blood president between studied groups and change defollow up periods	aring
Table (11):	Comparison of Cranial US and E between studied groups.	

List of Tables (Cont...)

Table No.	Title	Page No.
Table (12):	Comparison of temperature be studied groups and change during up periods.	follow
Table (13):	Comparison of SPO2 between s groups and change during follo periods	w up
Table (14):	Comparison of urinary output be studied groups and change during up periods	follow

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Success rate frequency among st groups	
Figure (2):	Line graph showing mean heart change among studied groups	
Figure (3):	Line graph showing mean RBG clamong studied groups	•
Figure (4):	Line graph showing mean SBP clamong studied groups	•
Figure (5):	Line graph showing mean DBP clamong studied groups	O
Figure (6):	Line graph showing mean temper change among studied groups	
Figure (7):	Line graph showing mean SPO2 clamong studied groups	U
Figure (8):	Line graph showing mean UOP clamong studied groups	•

List of Abbreviations

Abb.	Full term
ABG	Arterial blood gases
	Apparent life threatening event
	Apnea of prematurity
	Bone mineral density
	Bronchopulmonary
	Caffeine for Apnea of Prematurity
	Complete blood picture
	Central nervous system
	Nasal-continuous positive airway pressure
	C- reactive protein
	Food and Drug Administration
	Gamma-aminobutyric acid
	Gastroesophageal reflux
	Gastroesophageal reflux disorder
	Glomerular filtration rates
	$Gastrointestinal$
<i>IH</i>	Intermittent hypoxemia
<i>IV</i>	
<i>NEC</i>	Necrotizing enterocolitis
	Neonatal intensive care unit
NIPPV	Noninvasive positive pressure ventilation
OSAS	Obstructive sleep apnea syndrome
PDA	Patent ductus arteriosus
<i>PMA</i>	Post-menstrual age

List of Abbreviations (Cont...)

Abb.	Full term
<i>RBS</i>	Random blood sugar
<i>ROP</i>	Retinopathy of prematurity
<i>ROP</i>	Retinopathy of prematurity
<i>RSV</i>	Respiratory syncytial virus
<i>SIDS</i>	Sudden infant death syndrome
<i>VLBW</i>	Very low-birth-weight
wGA	Weeks of the gestational age
<i>WHO</i>	World Health Organization

Introduction

affeine is one of the widely used medications in the neonatal care units and in spite of its widespread use in preterm infants, there has been little information about the optimal efficient dose in those patients (Faramarzi et al., 2018).

Caffeine therapy for treatment of apnea of prematurity (AOP) is well established over the past few years, yet the optimal loading and maintenance dose of caffeine in preterm infants is not well-studied (Mohammed et al., 2015).

AOP is a developmental disorder that occurs as a result of immature respiratory control mechanisms (Di Fiore et al., 2013) and it may be associated with intermittent hypoxemia, hence may be related to greater incidence of deleterious neurodevelopmental outcomes and retinopathy of prematurity (ROP) (Martin et al., 2011).

AOP is a common complication of preterm birth, which affects more than 80 % of neonates with a birth weight less than 1, 000 g. Methylxanthine including caffeine and theophylline, are a mainstay in the treatment and prevention of AOP (Schoen et al., 2014).

Methylxanthines have been used as the backbone of pharmacologic treatments of respiratory disorders in preterm