

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Computer Science Department Faculty of Computer and Information Sciences Ain Shams University

Protecting Patients' Privacy using Medical Images Watermarking

Thesis submitted as a partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences

By

Alaa Hussein Ibrahim El-Saadawy

Teaching Assistant at Computer Science Department, Faculty of Computer and Information Sciences, Ain Shams University

Under Supervision of

Prof. Dr. Mohamed Ismail Roushdy

Professor of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University

Dr. Maryam Nabil Al-Berry

Lecturer at Scientific Computing Department, Faculty of Computer and Information Sciences, Ain Shams University

Dr. Ahmed Salah El-Sayed

Lecturer at Computer Science Department, Faculty of Computer and Information Sciences, Ain Shams University

Acknowledgment

First of all I thank Allah, the most merciful and gracious, who gave me the knowledge, patience and strength to complete this thesis, and blessed me with his inspired gifts to overcome the obstacles I encountered.

I would like to express my deep gratitude to my supervisors who I am very lucky to work under their supervision; Prof. Dr. Mohamed Roushdy for his usual support, patience, encouragement and guidance. Dr. Maryam Al-Berry and Dr. Ahmed Salah for their usual support, motivation and guidance, I extend my utmost gratitude and appreciation for your technical and scientific help, continuous supportive guidance in both technical and non-technical issues. I am deeply thankful.

Special thanks for my sister Hadeer for her continuous technical support.

I would like to thank the world best gift, the most supportive family. I would like to thank Mum and Dad who have devoted themselves to support me in my whole life, not just this work for their endless passionate support and encouragement and the sleepless nights they spent to make it easier for me, this thesis dedicated to you, to make you proud. Without you, everything is nothing. And my sisters Mahitab, Hadeer and Esraa for always being by my side in the downs and ups. Thanks my sisters for your usual moral support.

My family, thanks for being the shoulder I can always depend on and for constantly pushing me to become the person I want to become and create the life I want for myself.

I would like to thank my fiancée Mahmoud for being by my side. Thanks for your motivational encouragement and support, believing in me and pushing me to continue working on my thesis.

Also I would like to thank Engineer Amir Alfoly for his support and encouragement and provide me with everything to facilitate working on my thesis.

Last but not least, I would like to thank all my professors, colleagues and students who kept on encouraging me, and special thanks for my friend Dina Hassanien for her constant encouragement and support. Thank you for being in my life.

Abstract

As a result of modern communication technology, the transmission of medical images among different specialists in different medical institutes has become popular. Accordingly, protecting patients' data and authenticity against any unauthorized access or modification is a must.

Watermarking the images technique before transmission has became a main step to protect patient's information integrity, copyright, authentication and to protect patients' information against any signal processing or geometric attacks.

This thesis proposes a fragile reversible watermarking scheme. The proposed scheme is based on embedding a Quick Response (QR) code that contains the patient's data into the medical image followed by encrypting the image using Rivest-Shamir-Adleman (RSA) and finally compressing the encrypted image using Huffman encoding algorithm.

The proposed scheme can detect various types of geometric and signal processing attacks and localize tampering caused by copy-paste, text addition and content removal attacks in the extraction steps. For evaluating the proposed scheme, two different datasets were used which are OPENi and MURA as host images and QR code as a watermark image. Peak Signal to Noise Ratio (PSNR), Mean Squared Error (MSE), Structural Similarity Index Measure (SSIM) and Bit Error Rate (BER) were used as evaluation metrics.

Table of Contents

Acknowled	gment	II
	• • • • • • • • • • • • • • • • • • • •	
Table of Co	ontents	IV
List of Figu	res	VI
List of Tabl	es	VII
List of Abb	reviations	VIII
Chapter 1.	Introduction	2
1.1	Thesis Motivation	2
1.2	Thesis Objectives	4
1.3	Thesis Achievements	4
1.4	Thesis Organization	6
Chapter 2.	Theoretical Background	7
2.1	Watermarking in Medical Images	7
	2.1.1 Importance of Medical Images Watermarking	
	2.1.2 Advantages of Medical Images Watermarking	
2.2	Digital Watermarking Classification	
	2.2.1 According to Robustness	
	2.2.2 According to Human Perceptivity	9
	2.2.3 According to the Task Performed	9
	2.2.4 According to the Working Domain	
	2.2.5 According to the Extraction Process	10
	2.2.6 According to the Secret Keys	11
2.3	Watermarking Techniques	
	2.3.1 Spatial Transform Techniques	
	2.3.2 Transform Domain Techniques	
2.4	Attacks	
2.5	Watermarking Systems Requirements	
Chapter 3.	Related Work	20
3.1	General Overview	
3.2	Related Studies	
3.3	Comparative Analysis	31
Chapter 4.	Proposed Method	
4.1	Proposed watermarking technique:	
	4.1.1 Embedding Technique	
	4.1.2 Extraction Technique	
	4.1.3 Attacks and Tamper	36

4.2	Proposed Scheme	36
	4.2.1 Watermark Embedding Process	
	4.2.2 Watermarking Extraction Process	42
	4.2.3 Attacks Detection	46
	4.2.4 Tamper Localization	50
Chapter 5.	Experimental Results	52
5.1	Dataset	
5.2	Proposed Watermarking Technique Experimental Results	53
	5.2.1 Tamper Detection	57
	5.2.2 Tamper Localization	61
5.3	Proposed Scheme Experimental Results	63
Chapter 6.	Conclusions and Future Work	69
6.1	Conclusions	69
6.2	Future Work	70
List of Pub	lications	71
References		73

List of Figures

Figure 2-1 Digital Watermarking Classification	8
Figure 2-2 Watermark Attacks Categories	15
Figure 4-1 Main Architecture (a) Embedding (b) Extraction watermarking	
technique	33
Figure 4-2 Technique steps (a) Embedding and (b) Extraction steps	35
Figure 4-3 Watermarking Process	37
Figure 4-4 Image Preparation	37
Figure 4-5 Resize of Medical Image (a) Original Images (b) Images After Resize	ze
	38
Figure 4-6 Modified Embedding Technique	40
Figure 4-7 Watermarking Extraction Process	42
Figure 4-8 Modified Extraction Technique	44
Figure 4-9 Image Recovery	45
Figure 4-10 Proposed Watermarking Scheme	45
Figure 4-11 Attacks Detection	46
Figure 4-12 Sample of Geometric attacks (a) Geometric attack (b) crop attack.	49
Figure 4-13 Rotate Attack Sample	49
Figure 5-1 Sample of dataset (a) OPENi dataset (b) MURA dataset	53
Figure 5-2 Sample of Dataset	55
Figure 5-3 Tested Medical Image	57
Figure 5-4 Results of signal attacks on images	59
Figure 5-5 Results of geometric attacks on image	59
Figure 5-6 Results of Tamper Localization on sample images	62
Figure 5-7 Effect of embedding watermark (a) before watermarking (b) after	
watermarking	64

List of Tables

Table 2-1 Transform Domain Methods Comparison
Table 2-2 Spatial and Transform Domain Techniques Comparison 15
Table 3-1 A brief survey on the key studies for medical images
watermarking
Table 4-1 Signal Processing Attacks Description
Table 4-2 Tamper Description
Table 5-1 Average Performance under a medical image of different size 56
Table 5-2 Comparison between the proposed method and other methods 56
Table 5-3 Tamper Detection results for Signal attacks on a sample image. 58
Table 5-4 Tamper Detection results for Geometric attacks on a sample image
Table 5-5 Average BER results for Signal Attack on 138 medical images. 60
Table 5-6 Average BER results for Geometric Attack on 138 medical images
Table 5-7 Average BER results for tamper localization attacks on 138
medical images
Table 5-8 Proposed Scheme evaluation
Table 5-9 Signal attacks evaluation
Table 5-10 Geometric attacks evaluation
Table 5-11 Tamper Localization Samples
Table 5-12 Tamper Localization Evaluation

List of Abbreviations

Abbreviation Stands for

AE Arithmetic Encoding

AES Advanced Encryption Standard

BER Bit Error Rate

BP Binary Pattern

CA Approximation Coefficients

CD Diagonal Coefficients

CH Horizontal Coefficients

CT-Scan Computed Tomography Scan

CV Vertical Coefficients

CW Composed Watermark

DCT Discrete-Cosine Transform

DES Data Encryption Standard

DFT Discrete Fourier Transform

DTCWT Dual-Tree Complex Wavelet Transform

DWT Discrete-Wavelet Transform

ECC Elliptic-Curve-based encryption

EMR Electronic Medical Record

EPR Electronic Patient Report

EZW Embedded **Z**erotree **W**avelet

HF High Frequency

HS Hierarchical Segmentation

ICA Imperialistic Competition Algorithm

IWT Inverse Wavelet Transform

LBP Local Binary Pattern

LSB Least Significant Bit

MD5 Message Digest 5

MRI Magnetic Resonance Imaging

MSE Mean Square Error

MURA MUsculoskeletal RAdiographs

NCC Normalized Cross-Correlation

PNN Probabilistic Neural Network

PSNR Peak Signal to Noise Ratio

QR Quick Response

RLE Run-Length Encoding

ROI Region Of Interest

RONI Region Of Non-Interest

RSA Rivest-Shamir-Adleman

SR Similarity Ratio

SSIM Structural Similarity Index Matrix

SVD Singular Value Decomposition

US United State

WGN White Gaussian Noise

Chapter 1

Introduction

Chapter 1 Introduction

Chapter 1. Introduction

1.1 Thesis Motivation

Using shared medical images in some services like telemedicine, telediagnosis, and teleconsultation has been facilitated after the availability of computer networks. Sharing patient information among specialists in different hospitals is a must to understand diseases and avoid misdiagnosis [1] [2] [3]. One of the available techniques and approaches to protect medical images, while transferred through the internet, against any corruption or unauthorized access is the watermarking techniques [4].

Hiding the patient's data into the medical image without distorting it during transmission is essential to ensure the confidentiality of the transmitted data. Recovering the hidden data and the original medical image without errors is the priority in Electronic Patient Record (EPR) data hiding [5] [6]. Since making any modifications on medical images may lead to misdiagnosis, authenticity, which ensures that the source is valid and belong to the right patient, and integrity control, which checks that the image has not tampered, are the major purposes of medical images watermarking [7] [8] [9].

Since securing the patient's data is our main purpose, encrypting the medical image is considered as one of the main steps. There are several encryption techniques [10], such as, International Data Encryption Algorithm (IDEA) [11], private key encryption standard, Data Encryption Standard (DES) [12] Advanced Encryption Standard (AES) [13], Elliptic-Curve-based encryption (ECC) [14], and public key standards such as Rivest-Shamir-Adleman (RSA) [15].

Medical image compression is also a necessary step since storing a large number of images requires huge long-term storage space. There are two types of image compression algorithms, namely, lossless and lossy algorithms. For achieving a high compression rate, lossy algorithms are used, while lossless algorithms are used in case that we need to restore the original data without any loss [16].

Attacks are one of the most popular challenges of watermarking techniques. The two common attacks are signal processing attacks (like image compression, adding noise and different filters) and geometric attacks (such as rotation, translation and scaling) [17] and tampers like (copy-paste, text addition and content removal).

Medical image watermarking has many advantages: 1) The storage space required for the image and the patient record will be reduced by embedding the data in the corresponding images; 2) The additional bandwidth which is required for the transmission of an image by hiding data in the image itself can be avoided; 3) If the disease is clandestine, normally a patient does not like to expose his medical report to the public [18].

Besides the advantages of watermarking there are challenges associated with watermarking in Electronic Medical Record (EMR) systems such as 1) Some fields in EMR are more relevant in the diagnosis process; as a result, small variations in them could change the diagnosis; 2) A misdiagnosis might not only result in a life-threatening scenario but also might lead to significant costs of the treatment for the patients [19].