

بسم الله الرحمن الرحيم

HOSSAM MAGHRABY

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HOSSAM MAGHRABY

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

HOSSAM MAGHRABY

Evaluation of Serum Lipocalin-2 Levels and Its Relation to Insulin Resistance in Patients with Inflammatory Acne Vulgaris

Thesis

Submitted for Partial Fulfillment of Master Degree in **Dermatology**, **Venereology & Andrology**

By

Sara Hameed Samin Alhashmi

M.B.B.Ch

College of Medicine- Hawler Medical University

Under supervision of

Assisstant Prof. Dr. Marwa SalahEldin Zaki

Assisstant Professor of Dermatology, Venereology and Andrology Faculty of Medicine-Ain-Shams University

Dr. Marwa Yassin Ahmed

Lecturer of Dermatology, Venereology and Andrology Faculty of Medicine-Ain-Shams University

Faculty of Medicine
Ain Shams University
2021

سورة البقرة الآية: ٣٢

Acknowledgments

First, and foremost, thanks to "ALLAH", the most Gracious and the most Merciful, for his countless blessings.

I would like to express my deep gratitude to Assistant Prof. Dr. Marwa Salah&ldin Zaki, Assistant Professor of Dermatology, Venereology and Andrology, Faculty of Medicine -Ain Shams University, for her continuous support and guidance for me to present this work.

I acknowledge with much gratitude Dr. Marwa Vassin Ahmed, Lecturer of Dermatology, Venereology and Andrology, Faculty of Medicine-Ain Shams University for her sincerity and for devoting her time to complete this work.

Sara Hameed Samin

List of Contents

Title	Page No.
7.1 OFF 11	
List of Tables	
List of Figures	
List of Abbreviations	
1. Introduction	
2. Aim of the Work	
3. Review of Literature	
3.1. Acne Vulgaris	
3.1.1. Epidemiology:	
3.1.2. Pathogenesis:	
3.1.2.1. Hormonal changes and puberty:	
3.1.2.2. Western diet:	
3.1.2.3. pH of skin:	
3.1.2.4. Anxiety and stress:	
3.1.2.5. Role of linoleic acid:	
3.1.2.6. Role of peroxisome proliferators-activated	
receptors:	
3.1.2.7. Role of Inflammation:	_
3.1.2.8. Bacterial infection:	
3.1.2.9. Bacterial biofilm:	
3.1.3. Acne and insulin resistance:	
3.1.4. Diagnosis and Evaluation:	
3.1.4.1. History taking:	
3.1.4.2. Clinical picture:	16
3.1.4.3. Laboratory work-up to identify any	1.77
associated hormonal disorder:	
3.1.5. Scoring system for severity assessment:	
3.1.6. Treatment	
3.1.6.1. Topical Retinoids	
5 Lb Z Tobical Antimicrobial Agents	20

3.1.6.3. Systemic Antibiotics	21
3.1.6.4. Hormonal Therapies	
3.1.6.5. Isotretinoin	
3.1.6.6. Role of diet	
3.2. Lipocalin-2	
3.2.1. Lipocalin-2 and regulation of expression:	
3.2.2. Lipocalin-2 functions:	
3.2.2.1. Innate immune response	27
3.2.2.2. Iron-homeostasis:	
3.2.2.3. Modulator of the inflammatory response:	29
3.2.3. Lipocalin-2 and diseases:	31
3.2.3.1. Expression of LCN2 in systemic diseases:	31
3.2.3.1.1. Expression of LCN2 in inflammatory	
diseases	31
3.2.3.1.2. Expression of LCN2 in Ischemic diseases:	32
3.2.3.1.3. Expression of LCN2 in Renal diseases:	33
3.2.3.1.4. Expression of LCN2 in Malignant	
diseases:	33
3.2.3.2. Lipocalin-2 and skin diseases:	34
3.2.3.2.1. Psoriasis	34
3.2.3.2.2. Atopic dermatitis	35
3.2.3.2.3. Acne inversa (hidradenitis suppurativa)	36
3.2.4. Lipocalin-2 and insulin resistance:	36
4. Patients and Methods	39
5. Results	46
6. Discussion	68
7. Conclusions and Recommendations	76
8. Summary	78
References	82
Arabic Summary	١

List of Tables

Table No.	Title	Page No.
Table (1):	Global Acne Grading System	19
Table (2):	Demographic data of acne patients	47
Table (3):	The characteristic of acne in the patien	nt group48
Table (4):	Demographic data of control subjects	50
Table (5):	Comparison between cases and regarding the demographic data	
Table (6):	Comparison of LCN2, fasting glucose insulin and HOMA-IR between the tw	e, fasting
Table (7):	Relation of LCN2 to BMI, waist to and HOMA-IR in the study group	-
Table (8):	Comparison of moderate and severe acne regarding LCN2 and HOMA-IR	
Table (9):	Correlation of LCN2 and HOMA-IR demographic data and disease chara in acne patients	acteristics
Table (10):	LCN2 levels in relation to gender history and course	
Table (11):	HOMA-IR values in relation to gende history and course	•

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Bacterial pathogenesis in acne	12
Figure (2):	Comparison in LCN2 levels betwand control groups	
Figure (3):	Comparison in HOMA-IR levels acne and control groups	
Figure (4):	Comparison in fasting insulin levels acne and control groups	
Figure (5):	ROC analysis of LCN2 levels	56
Figure (6):	ROC analysis of fasting insulin leve	ls57
Figure (7):	ROC analysis of HOMA-IR levels	58
Figure (8):	Correlation of LCN2 with fasting gl	ucose65
Figure (9):	Correlation of LCN2 with onset of a	cne65
Figure (10):	Correlation of LCN2 with fasting in	sulin66
Figure (11):	Correlation of LCN2 with duration of	of acne66
Figure (12):	Correlation of HOMA-IR with glucose.	C

List of Abbreviations

Abb.	Full term
5-LOX	5-Lipoxigenase
<i>AD</i>	Atopic dermatitis
<i>AI</i>	Acne inversa
AV	Acne Vulgaris
<i>BMI</i>	Body mass index
<i>C.acnes</i>	Cutibacterium acnes
<i>CAH</i>	Congenital adrenal hyperplasia
<i>CP</i>	Choroid plexus
<i>CRH</i>	Corticotropin releasing hormone
DHEAS	Dehydroepiandrosterone sulphate
ELISA	Enzyme linked immune sorbent assay
<i>FAI</i>	Free androgen index
<i>GAGS</i>	Global Acne Grading System
<i>GBD</i>	Global Burden of Disease
<i>GM-CSF</i>	Granulocyte-macrophages colony stimulating
	factor
<i>HETE</i>	Hydroperoxy-ecosatetraenoic acid
HOMA	Homeostasis Model Assessment
HOMA-IR	Homeostasis Model Assessment of Insulin
	Resistance
	Hypothalamic -pituitary-adrenal axis
<i>HRP</i>	Horseradish peroxidase
<i>IBD</i>	Inflammatory bowel disease
•	Interferon γ
<i>IGF-1</i>	Insulin like growth factor-1
<i>IGFBP-1</i>	Insulin-like growth factor binding protein-1
<i>IGFBP-3</i>	Insulin-like growth factor binding protein-3

List of Abbreviations (Cont...)

Abb.	Full term
<i>IL-10</i>	Interleukin-10
<i>IL-11</i>	Interleukin-11
<i>IL-12</i>	Interleukin-12
<i>IL-17</i>	Interleukin-17
<i>IL-17A</i>	Interleukin-17A
<i>IL-17F</i>	Interleukin-17F
<i>IL-1α</i>	Interleukin-1 $lpha$
IL -1 β	Interleukin 1β
<i>IL-22</i>	Interleukin-22
<i>IL-23p19</i>	Interleukin-23p19
<i>IL-23p40</i>	Interleukin-23p40
<i>IL-6</i>	Interleukin-6
<i>IL-8</i>	Interleukin-8
LCN2	$Lipocalin ext{-}2$
<i>LDL</i>	Low density lipoprotein
<i>LPS</i>	Lipopoly saccharide
LTB4	Leukotriene B4
<i>MMPs</i>	Matrix Metalloproteinase
<i>mTORC1</i>	mammalian Target of rapamycin complex-1
NF-κB	$Nuclear\ factor\ \kappa B$
<i>NGAL</i>	Neutrophil gelatinase-associated lipocalin
NLPR3	Node like receptor family pyrin domain containing 3
<i>OA</i>	Osteoarthritis
<i>PCOS</i>	Polycystic ovary syndrome
<i>PPARs</i>	Peroxisome proliferators-activated receptors
<i>RA</i>	$Rheumatoid\ arthritis$
<i>RBP4</i>	Retinol-binding protein 4

List of Abbreviations (Cont...)

Abb.	Full term
ROS	Reactive oxygen species
SHBG	Sex hormone binding globulin
TGF - α	
TLR-2	Toll-like receptors 2
<i>TNF</i>	Tumor necrosis factor
<i>TNF-α</i>	
<i>TSH</i>	Thyroid-stimulating hormone
<i>WBC</i>	

ABSTRACT

ITS RELATION TO INSULIN RESISTANCE IN PATIENTS WITH INFLAMMATORY ACNE VULGARIS

Sara Hameed Samin Al Hashimi¹, MARWA YASSIN AHMED², MARWA SALAHELDIN ZAKI³

Authors information:

- 1- M.B.CH.B Erbil University Iraq
- **2-** M.D. Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Ain-Shams University.
- **3-** M.D. Department of Dermatology, Venereology and Andrology. Faculty of Medicine, Ain-Shams University.

Acne vulgaris is a common chronic inflammatory disease of the pilosebaceous unit. It is characterized by the formation of non-inflammatory comedones and inflammatory papules, pustules, nodules and cysts. Acne is extremely common and usually starts during the teenage years but can start for the first time in their 20s and 30s. The lesions usually involve the face, back and chest. Psychosocial impact of acne can be tremendous and lead to a poorer quality of life. Lipocalin-2 (LCN2) is an attractive biomarker of inflammation, ischemia, infection, and kidney damage.

Aim of the study: The current study aimed to evaluate serum Lipocalin-2 levels in inflammatory acne vulgaris patients and to reveal the possible relation between its serum levels and the insulin resistance status in patients.

Patients and methods: The study included 60 patients suffering from inflammatory acne vulgaris and 60 healthy control subjects. Full general and dermatological examination were performed, recording of BMI, GAGS score was done. Then, measurement of fasting insulin and fasting glucose was performed to calculate HOMAIR.

Results: Serum fasting insulin and HOMAIR levels were significantly higher in acne patients compared to control subjects. Correlation of HOMAIR with fasting glucose revealed statistically significant positive correlation.

Keywords: Acne vulgaris, Insulin resistance, Lipocalin

1. Introduction

cne is the most common skin infection in late adolescence. It affects the face, neck, and upper trunk area, where sebaceous follicles are the densest in population, and its prevalence is about 90% in teenagers (Zaenglein, 2018).

Hormones are considered as the prime factors in initiating acne. It is reported that with the start of puberty, acne mostly heralds, owing to the increased production of hormone, which tends to peak in the mid- teenage years. Hormone primarily stimulates sebaceous gland. The androgenic hormones (sex hormone) like that of dihydrotestosterone stimulate and regulate the metabolic rate and size of sebaceous gland (*Que et al.*, 2016).

The correlation between insulin resistance and severity of acne was investigated. The increased blood glucose which in turn stimulates increased insulin secretion, decreasing the availability of binding protein for insulin-like growth factor 1 (IGF-1) leading to facilitation of the effects of IGF-1 on basal keratinocyte proliferation. Also, insulin stimulates the synthesis of androgens which can cause acne (*Burris et al.*, 2018).

Lipocalin-2 (LCN2), also known as neutrophil gelatinase-associated lipocalin (NGAL), is released by various cell types and is an attractive biomarker of inflammatory skin diseases, infection, and kidney damage. Both intestinal and metabolic inflammation, as observed in obesity and related disorders, are associated with increased LCN2 synthesis (*Hu et al.*, 2018).