

بسم الله الرحمن الرحيم

HOSSAM MAGHRABY

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HOSSAM MAGHRABY

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

HOSSAM MAGHRABY

Cardiac Safety of Direct Acting Antiviral Agents among Egyptian Patients with Chronic Hepatitis C Infection

Anhesis

Submitted for Partial Fulfillment of M.D. Degree in Cardiology

By

Housam Magdy Said Mohamed Hassan

M.B.B.Ch, Master degree in Cardiology, Ain Shams University

Under Supervision of

Dr. Ahmed Ibrahim Nassar

Professor of Cardiology Faculty of Medicine, Ain Shams University

Dr. Ossama Ashraf Ahmed

Professor of Internal Medicine Faculty of Medicine, Ain Shams University

Dr. Ahmad Elsayed Yousef

Associate Professor of Cardiology Faculty of Medicine, Ain Shams University

Dr. Diaa Eldin Ahmed Kamal

Associate Professor of Cardiology Faculty of Medicine, Ain Shams University

Dr. Ahmed Elsayed Gaafar

Lecturer of Cardiology Faculty of Medicine, Helwan University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **Allah**, the Most Kind and Most Merciful.

I'd like to express my profound gratitude to **Dr.Ahmed Massar**, Professor of Cardiology, Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, continuous encouragement, which made completion of this work possible. I had the honor to complete this work under his supervision

I am deeply thankful to **Dr.Ossama Ashraf,** Professor of Internal Medicine, Ain Shams University for his great help, active participation, kind support and guidance. This work would not have been done without him

I also express my deepest gratitude to **Dr.Ahmad Elsayed** Associate Professor of Cardiology, Ain Shams University for his kind care, genuine support, granting me much of his time and continuous training setting a role model in professorship.

I would like to thank **Dr.Diaa Eldin Kamal**, Associate Professor of Cardiology, Ain Shams University for his outstanding dedication, continuous support, and his patience in reviewing and correcting this work. He has always been there for me in every step.

I would like to thank **Dr.Ahmed Gaafar**, Lecturer of Cardiology, Helwan University, who sincerely guided and supported me in every step in this work and in my career. His valuable ethics will be kept in my mind forever.

Finally I thank my parents and brother for always pushing me forward and for their unconditional support.

As ever, I thank my loving wife for her constant encouragement and patience. I owe her for putting up with my busyness without any sign of discomfort.

Housam Magdy Hassan

Tist of Contents

Page No.
i
iii
iv
1 -
3
4
Agents19
49
60
82
91
92
93
94
95

Tist of Tables

Table No.	Title	Page No.
Table (1):	Child-Pugh classification of severit disease (1964)	
Table (2):	Showing grading of LV diastolic funct	ion54
Table (3):	Demographic characteristics of study p	opulation60
Table (4):	Showing baseline laboratory finding the study population	
Table (5):	Showing final decision of direct actin drugs among study population	
Table (6):	Showing baseline electrocardiogram .	65
Table (7):	Showing baseline echocardiograp among study population	
Table (8):	Showing Baseline stress electrocamong study population	
Table (9):	Showing correlation between FIB-4 stress electrocardiogram paramete study group	rs among
Table (10):	Showing correlation between FIB-4 completing stress electrocardiograms study population	m among
Table (11):	Showing electrocardiogram comparison baseline and after treatment electrocamong study population	cardiogram
Table (12):	Showing comparison of echocardiograbetween baseline and post treatment study population	among the
Table (13):	Stress electrocardiogram comparison baseline and post treatment mea among study population	asurements

Tist of Tables (Cont...)

Table No.	Title	Page No.
Table (14):	Showing comparison between no and improved group in relation to results	o laboratory
Table (15):	Showing comparison between no and improved group in relation to antiviral drug	direct acting
Table (16):	Showing comparison between non-ir improved group in relation to rest electrocardiogram	ing baseline
Table (17):	Showing comparison between near and improved group in relation echocardiographic parameters	to baseline
Table (18):	Showing comparison between no and improved group in relationation treatment exercise electrocardiograms.	on to pre
Table (19):	Showing comparison between no and improved group in relation to sy	-
Table (20):	Showing comparison between neared improved group in relation treatment stress electrocardiogram	on to post

Tist of Figures

Fig. No.	Title	Page No.
Figure (1):	New effective drugs against HCV.	26
Figure (2):	Pie chart showing gender distributhe study population	_
Figure (3):	Bar Chart showing patient ri among the study population	
Figure (4):	Pie chart showing liver ultrasound study population	•
Figure (5):	Pie chart representing prolonged QT interval among study population	
Figure (6):	Bar chart showing echocar comparison between baseline and data among study population	d follow up

Tist of Abbreviations

Abb.	Full term
AASLD	American Association for the study of Liver Diseases
ACS	Acute Coronary Syndrome
<i>AFP</i>	Alpha-Feto-Proteins
<i>ALB</i>	Albumin
<i>ALT</i>	Alanine Aminotransferase
AST	Aspartate Transaminase
<i>ATP</i>	Adenosine Triphosphate
<i>B-NHL</i>	B Cell non-Hodgkins Lymphoma
BOC	Boceprevir
<i>BSA</i>	Body Surface Area
<i>CAD</i>	Coronary Artery Disease
<i>Cr.</i>	Creatinine
CVD	Cardiovascular Disease
<i>DAA</i>	Direct Acting Anti-viral drugs
DCM	Dilated Cardiomyopathy
DCV	Dac latas vir
<i>EASL</i>	European Association of Study of Liver Diseases
<i>ECG</i>	Electrocardiogram
<i>EF</i>	Ejection Fraction
FIB-4	Fibrosis-4
<i>FMD</i>	Flow Mediated Dilatation
FS	Fraction Shortening
<i>Hb</i>	Hemoglobin
HBA1c	Glycated Hemoglobin

Tist of Abbreviations (Cont...)

Abb.	Full term
HCC	Hepatocellular Carcinoma
	Hypertrophic Cardiomyopathy
HCV	
	Hepatitis C Virus Genotype 4
<i>HS</i>	
	Infectious Diseases Society of America
<i>IHD</i>	Ischemic Heart Disease
<i>INF</i>	Interferon
<i>INR</i>	International Standardized Ratio
IR	Insulin Resistance
<i>LA</i>	Left Atrium
<i>LDV</i>	Ledipasvir
LV	Left Ventricle
LVEDD	Left Ventricle End Diastolic Diameter
LVEF	Left Ventricular Ejection Fraction
LVESD	Left Ventricle End Systolic Diameter
LVMI	Left Ventricular Mass Index
<i>MACE</i>	Major Adverse Cardiovascular Events
<i>MAPHR</i>	Maximum Age Predicted Heart Rate
Max HR	Maximum Heart Rate
<i>MELD</i>	Model for End-Stage Liver Disease
<i>Mets</i>	Metabolic Equivalent
<i>MOH</i>	Ministry of Health and Population
<i>NCCVH</i>	National Committee for Control of Viral Hepatitis
<i>NK</i>	Natural Killer

Tist of Abbreviations (Cont...)

Abb.	Full term
NNIs	Non-Nucleoside Inhibitors
<i>NS</i>	Non Significant
PCR	Polymerase Chain Reaction
peg-INF	Pegylated Interferon
PI	Protease Inhibitor
<i>PIH</i>	Post Ischemic Hyperemia
Plt	Platelets
QTc	Corrected QT Interval
<i>RA</i>	Right Atrium
<i>RBV</i>	Ribavirin
<i>RTE</i>	Real-Time Elastography
<i>RVSP</i>	Right Ventricular Systolic Pressure
S	Significant
<i>SIM</i>	Simeprevir
SOF	So for sbuvir
SVR	Sustained Virologic Response
<i>TIME</i>	Exercise Time
TVR	Telaprevir
VEL	Velpatasvir
<i>WBC</i>	White Blood Cells
<i>WHO</i>	World Health Organization

Abstract

Background: Hepatitis C virus (HCV) is a major health problem in Egypt. Direct-actingantivirals (DAA) have markedly improved the treatment of HCV. However data regardingcardiovascular performance and safety are limited. The aim of our work was to assesscardiovascular performance and cardiac safety of direct acting antiviral agents in patients withchronic hepatitis C virus infection.

Results: Our study was a prospective cohort involving 64 HCV patients treated with DAA for 3weeks. All patients performed surface electrocardiogram (ECG), stress ECG test and transthoracicechocardiography before and after treatment. The end point of this study was the development ofmajor adverse cardiovascular event (MACE).12% of the studied patients showedimprovedcardiovascular performance after successful treatment of HCV with DAA. Predictors of improvedcardiovascular performance included lower baseline alanine aminotransferase, lower baseline restingheart rate and higher maximum heart rate during exercise post treatment. DAA had no significanteffect on resting ECG or transthoracic-echocardiographic parameters. No major adversecardiovascular event or complication occurred during or 3 month after treatment. None of the enrolled patients developed any signs of ischemia.

Conclusion: Direct acting antiviral agents were associated with an improvement incardiovascular performance and exercise related symptoms. DAA proved its cardiac safety inpatients with chronic hepatitis C virus infection receiving DAA

Keywords: HCV, Direct Acting, Antiviral, Cardiac Safety, cardiovascular performance, stresselectrocardiogram.

Introduction

Tepatitis C Virus (HCV) infection is considered one of the most important health problems worldwide, approximately affecting 185 million patients. Globally, it was found that liver cirrhosis and hepatocellular carcinoma (HCC) were attributed to HCV in 27% and 25% of cases respectively. Egypt has one of the highest prevalence of HCV worldwide (Mormile, 2016; Gomaa et al., 2017).

Although HCV is considered major contributor to different liver diseases, it also has extra-hepatic affection on the cardiovascular, kidney, lymph nodes, bone marrow, thyroid, and other organs (Dou et al., 2017).

HCV infection and cardiovascular affection concomitant conditions observed in a large proportion of the general population. Therefore, it is difficult to establish whether a simple association exists between the two conditions or other pathogenic mechanisms directly or indirectly link chronic HCV infection to cardiovascular disorders. A recent systematic review concluded that HCV infection was associated with twofold increase in carotid intima thickness, increased cerebrovascular and cardiovascular events (Petta, 2017).

The combination of pegylated interferon (peg-INF) with Ribavirin (RBV) was the main treatment regimen for chronic HCV infection. Many concerns about this regimen were raised