

بسم الله الرحمن الرحيم

HOSSAM MAGHRABY

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HOSSAM MAGHRABY

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

HOSSAM MAGHRABY

Ain Shams University Faculty of Engineering Structural Engineering

STRENGTH-PERFORMANCE CORRELATION FACTOR FOR SEISMIC DESIGN OF INFILLED MOMENT RESISTING RC FRAMES

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science in Civil Engineering

(Structural Engineering)

Prepared by:

Feras Ahmed Muhammed Hussein

Bachelor of Science in Civil Engineering

Faculty of Engineering, Ain Shams University, 2016

Supervised by:

Prof. Dr. Ayman Abo El-Fotooh Abd El-Maqsood

Professor of Structures
Faculty of Engineering, Ain-Shams
University

Prof. Dr. Ayman Hussein Hosny Khalil

Professor of Concrete Structures Faculty of Engineering, Ain-Shams University

Cairo - (2021)

Ain Shams University Faculty of Engineering Structural Engineering

STRENGTH-PERFORMANCE CORRELATION FACTOR FOR SEISMIC DESIGN OF INFILLED MOMENT RESISTING RC FRAMES

Prepared by:

Feras Ahmed Muhammed Hussein

Bachelor of Science in Civil Engineering Faculty of Engineering, Ain Shams University, 2016

Examiners' Committee

Name and Affiliation	Signature
Mohammed El-Said Eissa	
Prof. of Structural Engineering, Faculty of	
Engineering, Cairo University	
Mohammed Nour El-Deen Saad Fayed	
Prof. of Structural Engineering, Faculty of	
Engineering, Ain Shams University	
Ayman Abo El-Fotooh Abd El-Maqsood	
Prof. of Structural Engineering, Faculty of	
Engineering, Ain Shams University	
Ayman Hussein Hosny Khalil	
Prof. of Structural Engineering, Faculty of	
Engineering, Ain Shams University	

Date: 25 May 2021

STATEMENT

This thesis is submitted as a partial fulfilment of Master of Science in Civil Engineering, Faculty of Engineering, Ain-Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Feras Ahmed M	Juhammed Hussein
	Signature

Date: 25 May 2021

RESEARCHER DATA

Name : Feras Ahmed Muhammed

Hussein

Date of birth : 02/10/1992

Place of birth : Egypt

Last academic degree : B.Sc. in Civil Engineering

Field of specialization : Structural Engineering

University issued the degree : Ain Shams University

Date of issued degree : 2016

Current job : Structural Design Engineer

To My Parents....

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my supervisors Prof. Dr. Ayman Abo El-Fotooh & Prof. Dr. Ayman Hussein Hosny Khalil for their invaluable guidance, comments and suggestions throughout the course of this study.

Special thanks to Prof. Dr. Ayman Abo El-Fotooh for his constant encouragement and motivation to work harder and excel in my work; and to his fruitful support in the review and correspondences of the publications of the thesis.

Finally, I dedicate this thesis to my supportive and loving parents whom I would have never been whom I am now. My deepest thanks also goes to my beautiful and caring fiancé for her support and corrections she lovingly offered for my work.

Thank you all....

ABSTRACT

Unreinforced masonry (URM) infills are seldom included in numerical analysis of reinforced concrete structural systems and are generally considered as non-structural components. On the contrary, URM infill can increase the strength, stiffness, and energy dissipation of concrete structures; whilst drastically helping in reducing the deformations and hence ductility demands for the structural members. Owing to the complexity it introduces to analysis, URM is generally kept unaccounted for.

This research investigates the effects of URM infills on 2D frames using performance-based design (PBD) approach and developing a performance factor (P) meeting different performance levels of infilled frames.

Conventional building seismic codes are based on a linear force-based design (FBD) approach to ensure satisfactory performance of structures during earthquakes. Seismic forces are reduced by a response modification factor (R), which is related to the structure's ability to undergo inelastic deformations and to dissipate the earthquake input energy through hysteretic behavior. Herein, FBD approach is strength based rather than a displacement-based design, yet the displacement (drift) limit is satisfied.

On the other hand, performance criterion in the performance-based design (PBD) approach provides a better view on the performance of the structure based on the expected non-linear response during seismic events. A new factor namely the performance factor (P) is developed in this research to help engineers use the conventional FBD approach in designing and evaluating structures under lateral loading without the need to undergo tedious iterations of non-linearity while meeting the intended performance.

Keywords: Seismic Analysis, Non-linear Pushover Analysis, Performance Factor, Response Modification Factor, Masonry Infills, RC Moment Resisting Frames

Table of Contents

STAT	EME	NT	III	
RESEARCHER DATAIV				
ACKNOWLEDGEMENTVI				
Abstra	ct		VII	
list of figuresxii				
list of	Table	es	xvii	
Chapte	er 1 :	Introduction	1	
1.1	Ge	neral	1	
1.2	Dis	ssertation Organization	3	
Chapte	er 2 :	Literature Review	5	
2.1	Int	roduction	5	
2.2	Sei	ismic Design Methods	5	
2.2	2.1	Force Based Seismic Design	8	
2.2	2.2	Performance-Based Seismic Design	8	
2.3	Inf 28	duence of Masonry Infill Walls during Earth	quakes	
2.3	3.1	Short-column Effect	31	
2.3	3.2	In-plane Stiffness Irregularity (Torsional E	ffects)33	
2.4	De	esign Practices of Infills	34	
2.4	4.1	Modelling of Infill walls	35	
2.5	Pre	evious Studies on Infilled Frames	41	
Chapte	er 3 :	Finite Element Analysis	46	
3.1	Ge	neral	46	
3.2	Me	ethodology	47	
3.2	2.1	Conventional Linear Design Method	47	
3.2	2.2	Non-linear Procedure (Pushover Analysis)	53	

3.2	2.3	Method of calculating R and P factors	69
Chapte	er 4 :	Parametric Study	73
4.1	Mo	odelling and Analysis	73
4.	1.1	Infill Distribution in Elevation of Frames	74
4.	1.2	Concrete Dimensions and Reinforcement Ratio	s.77
4.	1.3	Material Properties	81
4.	1.4	Vertical Design Loads	84
4.	1.5	Seismic Loads	84
Chapte	er 5 :	Results and Discussion	87
5.1	Inf	ill Contribution to Energy Dissipation	87
5.	1.1	25-Storey Frames Models Results	88
5.	1.2	20-Storey Frames Models Results	93
5.	1.3	15-Storey Frames Models Results	97
5.	1.4	10-Storey Frames Models Results	.100
5.2	Eff	fects of Infills on Performance Level and P-Factor	r
	103	3	
5.2	2.1	25-Storey Frames Models Results	.104
5.2	2.2	20-Storey Frames Models Results	.107
5.2	2.3	15-Storey Frames Models Results	.110
5.2	2.4	10-Storey Frames Models Results	.113
5.2	2.5	Overall Conclusion and Discussion	.114
Chapte	er 6 :	Summary and Conclusion & Recommendations	for
Future	Rese	earch	.119
Refere	ences		.120
Appen	dices	S	.126
		x (A): ATC-40 Definitions & Equations for	
Con	vertii	ng Capacity Curve to Capacity Spectrum	.126

Appendix (B): ATC-40 Definitions & Equations for	
Calculating Effective Damping & Spectral Reduction	127
Appendix (C): Effective Damping Definition as per Fl	EMA-
440	129
Appendix (D): P-Factor Details	130
Appendix (E): Performance Points Details	132
Appendix (F): Time Period and Importance Factor	134

LIST OF FIGURES

Figure 2-1: Problem with definition of ductility capacity7
Figure 2-2: Casualty rates for different performance objectives 9
Figure 2-3: Force-deformation for hinge properties
Figure 2-4: Overall process of the capacity spectrum method
(CSM)13
Figure 2-5: Capacity Spectrum Procedure A after Step 215
Figure 2-6: Capacity Spectrum Procedure A after Step 315
Figure 2-7: Equal Displacement Approximation16
Figure 2-8: Bilinear Representation of Capacity Spectrum for
Capacity Spectrum Method17
Figure 2-9: Capacity Spectrum Procedure A after Step 417
Figure 2-10: Reduced Response Spectrum
Figure 2-11: Capacity Spectrum Procedure A after Step 5 18
Figure 2-12: Capacity Spectrum Procedure A after Step 6 19
Figure 2-13: Intersection Point of Demand and Capacity
Spectrums within Acceptable Tolerance
Figure 2-14: Positive post-yield slope21
Figure 2-15: Negative post-yield slope21
Figure 2-16: Response spectrum constant acceleration and
constant velocity segments24
Figure 2-17: Regular infill distribution in RC frames28
Figure 2-18: Change in the lateral load transfer mechanism
owing to inclusion of masonry infill walls29
Figure 2-19: Soft storey behavior of a building structure under
lateral loading30
Figure 2-20: Collapse of a building with soft storey Modica
town, in Italy30
Figure 2-21: Collapse mechanism of a building structure having
a soft storey31
Figure 2-22: Short columns are stiffer and attract larger forces
during an earthquake
Figure 2-23: Buildings with short columns; two explicit
examples of common occurrences32