

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Effect of Different Materials of Primary Telescopic Crowns on The Frictional Fit of Pekkton Partial Denture Frameworks in Kennedy Class I

A thesis submitted to Faculty of Dentistry Ain-Shams University, for the partial fulfillment of the requirements for the Master's degree in Oral and Maxillofacial Prosthodontics.

Presented by

Nehal Abdelmageed Mostafa

B.D.S Ain-Shams University 2016

Faculty of Dentistry
Ain Shams University
2021

SUPERVISORS

Dr. Shaimaa Lotfy Mohammed


Associate Professor of Oral and Maxillofacial Prosthodontics

Faculty of Dentistry - Ain-Shams University

Dr. Yasmin Galal Eldin Thabet

Associate Professor of Oral and Maxillofacial Prosthodontics

Faculty of Dentistry - Ain-Shams University

Acknowledgment

I would like to express my most sincere gratitude and grateful appreciation to **Dr**. *Shaimaa Lotfy Mohammed*, Associate Professor of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, Ain Shams University. I am so grateful and thankful for her endless support, encouragement, understanding, patience and enormous help and guidance.

My deepest thanks are extended to **Dr**. *Yasmin Galal Eldin Thabet*, Associate Professor of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, Ain Shams University, her valuable advice and help will always be remembered.

Many thanks are extended to all my professors, colleagues and staff members of the Prosthodontic department, Faculty of Dentistry, Ain Shams University for their encouragement and help.

List of Content

Subject	Page
List of content	i
List of figures	iv
List of tables	vi i
Introduction	1
Review of literature	3
I- Partial edentulism	3
II- Impact of partial edentulism	3
III- Classification of partially edentulous cases	5
IV-Prevalence and incidence	6
V-Treatment options for partially edentulous cases	7
a) Implant prosthesis	8
b) Fixed partial denture	8
c) Shortened dental arch	9
d) Removable partial dentures (RPD)	9
e) Telescopic RPDs	10
1. Types of telescopic RPDs	0
i. Cylindrical crowns	11
ii. Conical crowns	12
iii. Resilient designs	13
iv.Modified designs	13
2. Retention of telescopic RPDs	14
3. Advantages of telescopic RPDs	14
4. Disadvantages of telescopic RPDs	15
VI-Different materials used for fabrication of removable partial	
dentures	16
a) Metallic partial denture frameworks	17

b) Acrylic resin partial denture frameworks	17
i.Heat cured resins	19
ii. Chemically cured resins	20
iii.Light activated resins	22
c) Flexible	23
i.Thermoplastic acetal	24
ii.Thermoplastic polycarbonate	24
iii.Thermoplastic acrylic	24
iv.Thermoplastic nylon	25
d) Zirconium dioxide	26
e) Polyaryletherketons (PAEKs)	27
i.Polyether ether ketone (PEEK)	28
Modifications of PEEK	29
PEEK Optima	29
• BioHPP	30
BioHPP i.Polyetherketoneketone (PEKK)- Pekkton ivory	_
	33
i.Polyetherketoneketone (PEKK)- Pekkton ivory	33
i.Polyetherketoneketone (PEKK)- Pekkton ivory VII. Different techniques used for fabrication of frameworks	33 35 35
i.Polyetherketoneketone (PEKK)- Pekkton ivory VII. Different techniques used for fabrication of frameworks a) Last wax technique	35 35 36
i.Polyetherketoneketone (PEKK)- Pekkton ivory VII. Different techniques used for fabrication of frameworks a) Last wax technique b) CAD/CAM technique	35 35 36 36
i.Polyetherketoneketone (PEKK)- Pekkton ivory VII. Different techniques used for fabrication of frameworks a) Last wax technique b) CAD/CAM technique	35 35 36 37
i.Polyetherketoneketone (PEKK)- Pekkton ivory VII. Different techniques used for fabrication of frameworks a) Last wax technique b) CAD/CAM technique	33 35 36 37 40
i.Polyetherketoneketone (PEKK)- Pekkton ivory VII. Different techniques used for fabrication of frameworks	33 35 36 37 40 43
i.Polyetherketoneketone (PEKK)- Pekkton ivory VII. Different techniques used for fabrication of frameworks	33 35 36 37 40 43
i.Polyetherketoneketone (PEKK)- Pekkton ivory VII. Different techniques used for fabrication of frameworks	33 35 36 37 40 43 43
i.Polyetherketoneketone (PEKK)- Pekkton ivory VII. Different techniques used for fabrication of frameworks	33 35 36 37 40 43 43 44

Materia	ıl and	d Methods51		
	I-	Scanning of the educational casts51		
	II-	Modification of the virtual cast53		
	III-	Construction of the 3D printed casts54		
	IV-	Constructions of primary crowns57		
	V-	Construction of telescopic framework:6		
		a- Designing of the secondary crowns67		
		b- Surveying and block-out69		
		c- denture base designing69		
		d- mandibular major connector designing 69		
		e- Finalizing the design69		
	VI-	Preparations before cementation73		
	VII-	Cementation of primary crowns78		
	VIII-	Preparation of the artificial saliva82		
X-Evaluation of the friction fit between the primary and				
	S	econdary crowns82		
Res	ults	94		
Disc	cussi	ion101		
Sun	nma	ry115		
Con	clusi	ion118		
Refe	eren	ces119		
Arabic summary				

List of Figures

Figure no.	description	pages
Figure (1): Educational (Ken	nedy class I) cast	52
Figure (2): The Identica hyb	orid 3D dental Scanner	52
Figure (3): The cast was mo	dified to create four abutments in the	
place of the first	and second premolars bilaterally	53
Figure (4): A common path	of insertion and removal	54
Figure (5): Mogassam print	ting machine	55
Figure (6): NextDent™ resi	n material for 3D printed casts	56
Figure (7): Bredent post-cu	ring equipment	56
Figure (8): The 3D printed of	asts	57
Figure (9): The 3D cast was	powdered to be scanned	58
Figure (10): Finish line area	with no cement gap	59
Figure (11): STL file of desig	n of the primary crowns on EXOCAD softwa	are 59
Figure (12): The Pektton bla	ınk	61
Figure (13): The 5-axis millir	ng machine	61
Figure (14): Milling of Pektt	on blank inside milling machine	62
Figure (15): Pekkton primar	y crowns after retrieval from the milling ma	achine 62
Figure (16): The Visio.link To	oolkit for polishing of Pekkton	63
Figure (17): Diagen-Turbo-G	Grinder	63
Figure (18): Ceragum rubbe	r-polishing cylinder	63
Figure (19): Pre-sintered Ke	rox ZircoStar®, HT Zirconia Disc	64
Figure (20): Zirconia primar	ry crowns after retrieval from the milling m	achine.65
Figure (21): Eve polishing ki	t for zirconia	66
Figure (22): The primary cro	owns in their places on the 3D cast	67
Figure (23): The telescopic	retained RPD design process was started w	ith the
design of the secondary cr	owns	68
Figure (24): Insertion direc	tion of the secondary crowns	68

Figure (25): Design of the framework on Exocad software
Figure (26): PMMA blank placed inside milling machine
Figure (27): The PMMA framework after it was retrieved from the milling
machine
Figure (28): The PMMA framework with two holes at premolar areas
bilaterally and one at midline
Figure (29): The finished PEKKTON framework after milling process
Figure (30): Renfert sandblasting unit
Figure (31): Sandblasting the primary crowns
Figure (32): Sandblasting the resin cast
Figure (33): Cleaning of the resin casts with compressed air
Figure (34): Viso.link primer for Pektton crowns and MKZ primer for zirconia
crowns
Figure (35): Application of viso.link primer on the 3D printed casts
Figure (36): Denstar extra-oral light cure unit
Figure (37): Application of MKZ primer into the zirconia crowns
Figure (38): TheraCem self-adhesive resin cement
Figure (39): Application of TheraCem adhesive into primary crowns 97
Figure (40): Trimming the excess cement before resuming curing 97
Figure (41): The framework was seated
Figure (42): Curing the TheraCem adhesive while the framework in place 80
Figure (43): Primary crowns after light curing left to continue chemical
polymerization
Figure (44): Pekkton framework placed over zirconia primary crowns 81
Figure (45): The same pekkton framework placed over pekkton primary crowns
Figure (46): Components of Glandosane artificial saliva

Figure (47): A cylindrical acrylic projection was constructed at the
center of the base of the cast 84
Figure (48): A cylindrical acrylic projection trimmed to fit the pull off test
machine
Figure (49): Metal rings pass through holes of the framework 85
Figure (50): Metal plate attached to the occlusal surface of the framework 85
Figure (51): Lloyd LR5K Plus Universal Testing Machine 86
Figure (52): Loading the framework with a compressive pre-weight 87
Figure (53): Initial pull off test
Figure (54): Lloyd LR5K Plus Universal Testing Machine
Figure (55): CS-4.4 - SD Mechatronic chewing simulator
Figure (56): Point of load application in the center of the metal plate 90
Figure (57): The cast mounted on the specimen chamber
Figure (58): Point of load application in the center of the metal plate 92
Figure (59): Bar chart showing average frictional fit (N) for the studied groups95
Figure (60): Bar chart representing mean values of the frictional fit
for groups (A)
Figure (61): Bar chart representing mean values of the frictional fit for group
(B)
Figure (62): Bar chart representing mean and standard deviation values of the
friction fit in the two studied groups

List of Tables

Table no.	Title	Pages
1	Mean, Standard deviation, and P value of student's t-test	95
	for the comparison between the two studied groups.	
2	Mean, Standard deviation, and P value of paired t-test for	96
	difference in friction fit after 3 & 6 months for group (A).	
3	Mean, Standard deviation, and P value of paired t-test for	97
	difference in friction fit after 3 &6 months for group (B).	
4	Mean, Standard deviation, and P value of un-paired t-test	99
	for the comparison between the two studied groups.	

Introduction

Loss of posterior teeth may affect the neuromuscular stability of the mandible. Furthermore, reduced masticatory efficiency and loss of the vertical dimension of occlusion may occur in addition to poor aesthetics. Removable partial dentures (RPDs) are particularly indicated in Kennedy class I cases when there is a need for a simple and economic solution.

Conventional RPDs have some limitations as the metallic color of the clasps, irritation to the gingiva of the supporting teeth, inadequate mastication, poor patient satisfaction and reduced oral comfort.

Telescopic crown attachments (TCAs) have been successfully used in partially edentulous patients. TCAs consist of a primary telescopic crown cemented to a natural tooth abutment and an outer secondary telescopic crown attached to the RPD framework. This type of attachment provides retention, support, and stability with optimal hygiene for the RPD. (1)

With the emergence of CAD/CAM technology, telescopic crown attachments can be virtually designed and milled precisely to ensure a passive fit of the attachment parts and maximal function of the RDP. Digital technology decreases the number of visits, as well as produces accurate prosthesis.

Zirconia is one of the most crown materials used for dental crowns and attachments, because it is highly biocompatible, and the smooth surface reduces plaque accumulation. The material also promotes a healthy tissue response. (2)

Zirconia is suitable for patients with metal allergies or those who prefer metal-free restorations. The high translucent product of this material