

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Role of Computed Tomography and Magnetic Resonance Imaging in detecting the Prevalence of inner ear anomalies among cochlear implant candidates

Ehesis

Submitted for partial fulfilment of Master's degree in Radiodiagnosis

Presented by

Alaa Nasser Hussain Zaher

M.B.B.CH. - Ain Shams University

Supervised by

Assist. Prof. Dr. Tougan Taha Abd El Aziz

Assistant Professor of Radiology Faculty of Medicine, Ain Shams University

Dr. Ahmed Samy Abdelrahman

Lecturer of Radiology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2020

First, I thank God for blessing me more than I deserve and for his uncountable gifts which are exceedingly abundantly above all what we ask or think.

I would like to express my deepest appreciation and gratitude to Assistant Prof. Dr. Tougan Taha Abd El Aziz for her sincere encouragement, constant advice and valuable guidance throughout the performance of this work.

I owe special thanks, gratitude and appreciation to **Tecturer Dr. Ahmed Samy Abdelrahman** with his close supervision, continuous advice, patience and support which gave me the best guidance during different stages of this work.

Finally, I can not forget to thank my dear husband, my lovely daughter, my family and my colleagues for their support and encouragement.

Content

List of Figures	II
List of Tables	V
List of Abbreviations	VII
Introduction	VIII
Aim of the study	4
Chapter 1: Embryology of the inner ear	5
Embryological development of the Inner Ear	5
Chapter 2: Anatomy of the inner ear	14
Chapter 3: Pathophysiology of Inner ear malforms	ations 41
Patients and methods	68
Results	77
Illustrative cases	103
Discussion	113
Summary & Conclusion	121
References	122
الملخص العربي	131

List of Figures

Figure 1: Development of inner ear from ectoderm and mesoderm	
Figure 3: Serial drawing showing the formation of the otocyst	8
Figure 5: Serial drawing showing the progressive development of the inner ear	
Figure 6 shows the two labyrinths of the inner ear with the bony labyrinth partially cut away to show the membranous labyrinth within	
Figure 7 (a, b) show the left bony labyrinth, (a) showing its lateral aspect, (b) showing its inferior aspect	
Figure 8: A cross section in the cochlear duct showing different partitions of the cochlea.	. 21
Figure 9 shows the membranous labyrinth	. 22
superior border.	
Figure 11: Schematic drawing of the vestibulocochlear nerve pathway	
Figure 12: Jugular foramen level	
Figure 14: Midtympanic level	
Figure 15: Midtympanic level	
Figure 16: Epitympanic–internal auditory canal level	
Figure 17: Epitympanic—internal auditory canal level	
Figure 18: Epitympanic–internal auditory canal level	
Figure 19: Epitympanic–internal auditory canal level	
Figure 20: Epitympanic–internal auditory canal level	
Figure 21: Epitympanic–internal auditory canal level	. 32
Figure 22: Mastoid antrum level	. 33
Figure 23: Mastoid antrum level	
Figure 24: Temporomandibular joint (TMJ) level	. 34
Figure 25: Geniculate Ganglion level	. 35
Figure 26: Anterior tympanic level	
Figure 27 : Midtympanic level	
Figure 28: Midtympanic level	
Figure 29: Posterior tympanic level	. 38
Figure 30:Oval window level	. 38

List of Figures

Figure 31: Jugular foramen level	. 39
Figure 32: Midtympanic level T2-weighted image	. 40
Figure 33: Epitympanic level, T2-weighted image	. 40
Figure 34 (A, B): Embryogensis of cochlear malformations	. 49
Figure 35 (A, B): Complete labyrinthine aplasia as seen in axial (A) and	
coronal cuts (B) CT scans	. 52
Figure 36 (X, Y): X showing aplasia with normal vestibule and Y	
showing aplasia with enlarged vestibule.	. 53
Figure 37 (A) diagramtic image of different types of cochlear	
hypoplasia, (B, C, D) show CT images of cochlear	
hypoplasia I, II, III, respectively	
Figure 38: Common cavity anomaly	. 56
Figure 39: Diagramatic drawing and ct image of incomplete partition	<i>5</i> 0
type I	
Figure 40: CT image of incomplete partition type II.	. 60
Figure 41: MR images T2 DRIVE (3D) of a right temporal bone of a	
patient with normal hearing reveals normal distance X	
between OSL-BM and linear singal void infront of them	<i>6</i> 1
(white arrow) <1.2 mm.	. 01
Figure 42: MR images T2 DRIVE (3D) of a right temporal bone of a	
patient diagnosed as IP-II reveals abnormal distance X	
between OSL-BM and linear singal void infront of them	<i>(</i> 1
(white arrow) >1.2 mm.	
Figure 44: CT image of incomplete partition type III anomaly.	
Figure 44: Semicircular canal and vestibule aplasia	. 03
Figure 45: CT images of mild and severe lateral semicircular canal	<i>(</i> 1
dysplasia respectively.	
Figure 46: CT image showing enlarged vestibular aqueduct	
Figure 47: MR image showing enlarged endolymphatic duct	
Figure 48: Cochlear Nerve hypoplasia.	
Figure 49: Cochlear Nerve aplasia.	
Figure 50: Pie chart representing sex distribution of the study group	
Figure 51: Histogram representing age distribution of the study group	. 79
Figure 52: Pie chart representing family history distribution of the study	0.0
group	. 80
Figure 53: Distribution of cochlear implant candidates according to the	
prevalence of congenital inner ear anomalies to the total	0.1
number of patients	. 81
Figure 54: Distribution of cochlear implant candidates according to the	
prevalence of congenital inner ear anomalies to the total	
number of ears.	. 82

Tist of Figures

Figure 55: Bar chart representing distribution of abnormalities in the
cochlear structure among the study group84
Figure 56: Bar chart representing distribution of Cochlear abnormalities
among candidates86
Figure 57: Pie chart representing distribution of Total number of
cochlear abnormalities of the study group87
Figure 58: Bar chart representing distribution of lateral semicircular
canal abnormalities among the study group
Figure 59: Bar chart representing distribution of superior semicircular
canal abnormalities among the study group
Figure 60: Bar chart representing distribution of posterior semicircular
canal abnormalities among the study group
Figure 61: Bar chart representing distribution of semicircular canal
abnormalities among the study group
Figure 62: Pie chart distribution of cochlear implant candidates
according to the total number of semicircular canal
abnormalities92
Figure 63: Pie chart distribution of cochlear implant candidates
according to abnormalities in the vestibule
Figure 64: Pie chart distribution of cochlear implant candidates
according to abnormalities in the vestibular aqueduct94
Figure 65: Pie chart distribution of cochlear implant candidates
according to abnormalities in the Internal auditory canal95
Figure 66: Bar chart distribution of different abnormalities seen in the
Cochlear nerve among the study group96
Figure 67: Bar chart distribution showing the total number of Cochlear
nerve abnormalities among the study group97
Figure 68: Bar chart distribution of Complete Labyrinthine Aplasia
among the study group
Figure 69: Bar chart distribution of brain abnormalities among the study
group99
Figure 70: Pie chart distribution of syndromes among the study group 100
Figure 71: Distribution of cochlear implant candidates according to the
prevalence of congenital inner ear anomalies
Illustrative case: 1
Illustrative case: 2
Illustrative case: 3
Illustrative case: 4

List of Tables

Table 1 showing the fluid compsition in the cochlea	24
Table 2: Syndromes associated with inner ear anomalies	43
Table 3: Embryogensis of cochlear malformations	49
Table 4: Jackler's and Sennaroglu's classification of congenital malfor-	
mations of inner ear	50
Table 5: Distribution of cochlear implant candidates according to their	
demographic data regarding sex and age	78
Table 6: Distribution of cochlear implant candidates according to their	
family history	80
Table 7: Distribution of cochlear implant candidates according to the	
prevalence of congenital inner ear anomalies to the total	
number of patients	81
Table 8: Distribution of cochlear implant candidates according to the	
prevalence of congenital inner ear anomalies to the total	
number of ears included	82
Table 9: Distribution of cochlear implant candidates according to	
abnormalities in the Cochlea structure regarding Apical turn,	
Middle turn and Basal turn	83
Table 10: Distribution of cochlear implant candidates according to the	
prevalence of Cochlear abnormalities including Aplasia,	
Hypoplasia, Incomplete partition I, Incomplete partition II,	
Incomplete partition III and Common cavity	85
Table 11: Distribution of cochlear implant candidates according to	
different cochlear abnormalities	87
Table 12: Distribution of cochlear implant candidates according to	
abnormalities in the Lateral semicircular canal in the form of	
Dysplasia, Aplasia & Dehiscence	88
Table 13: Distribution of cochlear implant candidates according to	
abnormalities in the Superior semicircular canal in the form	
of Dysplasia, Aplasia and Dehiscence	89
Table 14: Distribution of cochlear implant candidates according to	
abnormalities in the Posterior semicircular canal in the form	
of Dysplasia, Aplasia and Dehiscence	90

Tist of Tables

Table 15: Distribution of cochlear implant candidates according to	
abnormalities seen in semicircular canals among candidates	
in the form of Dysplasia, Aplasia and Dehiscence	91
Table 16: Distribution of cochlear implant candidates according to the	
total number of semicircular canal abnormalities	92
Table 17: Distribution of cochlear implant candidates according to	
abnormalities in the vestibule	93
Table 18: Distribution of cochlear implant candidates according to	
abnormalities in the Vestibular Aqueduct	94
Table 19: Distribution of cochlear implant candidates according to	
abnormalities in the Internal auditory canal	95
Table 20: Distribution of cochlear implant candidates according to	
abnormalities in the Cochlear nerve in the form of Aplasia	
and Hypoplasia	96
Table 21: Distribution of cochlear implant candidates according to the	
total number of anomalies in the Cochlear nerve	97
Table 22: Distribution of cochlear implant candidates according to the	
presence or absence of Complete Labyrinthine Aplasia	98
Table 23: Distribution of cochlear implant candidates according to	
presence or absence of brain abnormalities	99
Table 24: Distribution of cochlear implant candidates according to the	
presence or absence of syndromes	00
Table 25: Distribution of cochlear implant candidates according to the	
Tuble 23. Distribution of element implant candidates decording to the	

List of Abbreviations

Abb.	Full Term
ABI	Auditory brainstem implantations
ALARA	As low as reasonably achievable
CI	Cochlear implants
CPA	Cerebellopontine angle
CT	Computed tomography
CVN	Cochleovestibular nerve
DRIVE	Driven equilibrium
ELD	Endolymphatic duct
FRFSE	Fast recovery fast spin-echo
HRCT	High resolution computed tomography
IAC	Internal auditory canal
IP-I	Incomplete partition type i
IP-II	Incomplete partition type ii
IPIII	Incomplete partition type iii
IV	Intravenous
LSCC	Lateral semicircular canal
LVA	Large vestibular aqueduct
MRI	Magnetic resonance imaging
PACS	Picture archiving and communications system
PSCC	Posterior semicircular canal
SCC	Semicircular canal
SD	Standard deviation
SNHL	Sensorineural hearing loss
SSCC	Superior semicircular canal

ABSTRACT

Background: Hearing loss management using cochlear implants in patients with inner ear anomalies has long been discussed in the otology community. Magnetic resonances imaging (MRI) and Computed tomography (CT) play important roles in the preoperative assessment of inner ear abnormalities such as cochlear nerve deficiency and variant anatomy as these abnormalities may not only affect the decision of the implantation procedure or the patient's prognosis regarding auditory improvement, but also the risk of complications.

Objective: To examine the prevalence of inner ear anomalies among cochlear implant recipients in patients with congenital sensorineural hearing loss among the pediatric age group in the Demerdash hospital, Ain Shams university using High resolution computed tomography (HRCT) and MRI imaging.

Methods: A retrospective descriptive study over the course of 9 months that included all patients that are candidates for cochlear implant referred to the Radiology department, Ain Shams University Hospitals for a preoperative imaging in the form of CT and MRI scans.

Results: CT and MRI scans of 33 patients who had congenital hearing loss and were candidates for cochlear implantation with total 66 ears were reviewed. Inner ear anomalies were identified in 8 patients representing a prevalence (24.2%) with 14 ear diseased. Anomalies were seen bilaterally in 6 patients and unilaterally in 2 patients. Among the 14 diseased ear, 9 ears (64.3%) were seen with incomplete partition II, 7 ears (50%) were seen with enlarged vestibular aqueduct, 4 ears (28.6%) were seen with cochlear hypoplasia, 3 ears (21.4%) were seen with semicircular canal aplasia, 2 ears (14.3%) were seen with incomplete partition type I, 2 ears (14.3%) were seen with cochlear nerve aplasia, 2 ears with cochlear aplasia (14.3%), 1 ear (7.1%) was seen with common cavity, 1 ear (7.1%) with complete labyrinthine aplasia.

Conclusion: Prevalence of inner ear anomalies among cochlear implant candidates was 24.2%. This result is consistent with results worldwide and the most common anomalies were Incomplete partition II and large vestibular aqueduct.

Keywords: Sensorineural hearing loss, cochlear implant, high-resolution computed tomography, magnetic resonance imaging, inner ear.

Abbreviations: Computed tomography (CT), Magnetic resonance imaging (MRI), High resolution computed tomography (HRCT), Internal auditory canal (IAC), Cerebellopontine angle (CPA).