

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Optical Coherence Tomography and Optical Coherence Tomography Angiography Findings in Amblyopic Patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Ophthalmology

By

Marwa Salah Mohamed Ibrahim

MB. Bch., 6th October University.

Under supervision of

Prof. Dr. Azza Mohamed Ahmed Said

Professor of Ophthalmology Faculty of Medicine, Ain Shams University

Dr. Mahmoud Ahmed El Samkary

Assistant professor of Ophthamology Faculty of Medicine, Ain Shams University

Dr. Islam Abdallah Mohalhal Soliman

Assistant professor of Ophthalmology Research Institute of Ophthalmology

> Faculty of Medicine Ain Shams University Cairo - Egypt 2021

Acknowledgments

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Azza Mohamed Ahmed Said,** Professor of Ophthalmology, Faculty of Medicine, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Mahmoud Ahmed El Samkary,** Assistant professor of Ophthamology, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Islam Abdallah**Mohalhal Soliman, Assistant professor of Ophthalmology,
Research Institute of Ophthalmology, for his great help, active participation and guidance.

Marwa Salah

Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	5
Review of Literature	
Amblyopia	6
Optical Coherence Tomography	30
Optical Coherence Tomography Angiography	47
Patients and Methods	66
Results	75
Discussion	94
Conclusion	105
Summary	106
References	108
Arabic Summary	

List of Abbreviations

Abb. Full term	
BBV Balanced binocular viewing	
BCVA Best corrected visual acuity	
CCD Charge-coupled device	
epRNFL Circumpapillary retinal nerve fiber layer	
CT Choroidal thickness	
DCP Deep capillary plexus	
DE Dominant eye	
EDI Enhanced depth imaging	
ELM External limiting membrane	
FAZ Foveal avascular zone	
FD-OCT Fourier domain optical coherence tomograph	ıy
FFA Fundus fluorescein angiography	
FMT Foveal minimum thickness	
GCL Ganglion cell complex	
GCL Ganglion cell layer	
-BiT Interactive binocular treatment	
CGA Indocyanine green angiography	
LM Internal limiting membrane	
NL Inner nuclear layer	
PLInner plexiform layer	
Mrnfl Macular retinal nerve fiber layer	
NDE Non-dominant eye	
OCT Optical coherence tomography	
OCTA Optical coherence tomography angiography	
ONH Optic nerve head	
ONL Outer nuclear layer	

List of Abbreviations Cont...

Abb.	Full term
OPL	Outer plexiform layer
RNFL	Retinal nerve fiber layer
SCP	Superficial capillary plexus
	Spectral domain Optical coherence tomography
SS-OCT	Swept-source optical coherence tomography
TD-OCT	Time domain optical coherence tomography
VD	Vascular density

List of Tables

Tal	ole No.		Title		Page No.
1:	Demographi	c Data			76
2:	Shows the visual acuity			· ·	garding 78
3:	Comparison group regard		•		atients' 80
4:	Comparison groups regard		_		oatients 83
5:	Showing RN and amblyon	-			l group 86
6:	Comparing group and as				control 90
7:	Comparison group regard		U		atients' DCP92

List of Figures

Fig.	No.	Title	Page No.
1		ailey–Lovie chart	
2	disp	target optotype and examples of crollays with crowding features placed 1 st.h away from the target	roke-
3	Opti	c atrophy	13
4	Mod	erately hypoplastic disc	13
5		eal hypoplasia	
6	Com	plete ptosis	15
7	Corr	neal opacity	15
8	Den	se congenital cataract	15
9	Cong	genital esotropia	16
10	Inte	rmittent exotropia	16
11		rent management of amblyopia in child ck) and areas of controversy (red)	
12		ses and occlusion or pharmacological blur sometimes surgery	•
13		optic stimuli as presented to the pa	
14	Tetr	is games	25
15	3D r	novies and computer games	26
16	The	I-BiT system	27
17	TD-0	OCT	32
18	Time	e domain OCT	33
19	Prin	ciple of spectral domain OCT	34
20	SD-0	OCT	34
21	Prin	ciple of swept source OCT	36
22	Swe	pt source OCT	36

List of Figures Cont...

Fig.	No.	Title	Page No.
23		line showing the evolution of various	
24		omical layers as seen on OCT and	
25	OCT)	ring OCT images obtained using Cirrus system, showing increasing signal q the technique of image averaging	uality
26	and	ring (HD-OCT) with the technique of longer-wavelength sweeping laser	light
27	Norm	nal fluorescein angiogram, left, with n yanine green angiogram right	ormal
28	Norm	nal OCTA	48
29		ocation of different en-face zones in re	
00		stology of the human retina	
30	_	hical representation of 4 en-face zone	
31	(OCT	cal coherence tomography angiog (A) of the foveal avascular zone ned using inbuilt software (mm2)	(FAZ)
32	Gene	ral scanning protocol for optical cohe	erence
33		ach location in a volume scan multig s are obtained and compared	
34	in broptica (OCT and capill	parison of fluorescein angiography imagench retinal vein occlusion with the coherence tomography angiog (A) images obtained at the superficitle (C) retinal plexus. Ischemic area colory drop out is better delineated (A)	nat of raphy al (b) due to using

List of Figures Cont...

Fig.	No.	Title	Page No.
35	acqu	ace image of the (SVP) from 30° × 15° ired with resolution of 11 µm/iding a large field of view	pixel,
36	OCT.	A Wide-Field Montage of a Normal Eye	61
37		rysms that are seen on FA in A1 that seen on OCTA are circled in yellow	
38	of t	xample of a projection artefact (yellow be superficial vessels seen in the alar plexus segmentation	deep
39	cause	on artefact seen by black vertical ed by blinking (yellow arrowhead) and ements (green arrowhead)	d eye
40		elberg engineering, OCT spect	
41		ographic Data for (A) age, (B) Sex	
42		parison between control group and pat p regarding central macular thickness	
43	Stral	macular thickness (A) Control, pismic, (C) anisometropic, (D) Se ivative amblyopia	nsory
44		thickness (A) Control, (B) Strabismic ometropic, (D) Sensory deprivative	
45	-	parison between control group and pat p regarding RNFL	
46		L thickness (A) Control, (B) Strabismi ometropic, (D) Sensory deprivative	•

List of Figures Cont...

Fig.	No. Title	Page No.
47	Choroidal thickness (A) Co Strabismic (LT eye), (C) Ani (D) Sensory deprivative (LT e	sometropic (RTeye),
48	FAZ in SCP (left) and DCP (a (B) Strabismic amblyopia, amblyopia (D) Sensory depriv	(C) Anisometropic

Introduction

Amblyopia is the most common vision deficit in children, affecting 2-5% of children in the UK and the second most common cause of functional low vision in children in low-income countries. Unilateral amblyopia is a developmental defect of vision, and has two main causes: (i) a difference in the optical properties of the two eyes, reflected in a different spectacle prescription for the right and the left eye (anisometropia) and (ii) strabismus (misalignment of the visual axes). Some children have both anisometropic and strabismic amblyopia ('combined' or 'mixed mechanism' amblyopia) (Tailor et al., 2016).

A study was made by Rashad et al., 2018 to measure the prevalence of amblyopia among primary school children in central Cairo which was 1.49% another study was made in Minia University showed same prevalence of amblyopia (Abdelrazik and Khalil, 2014).

Rarely, congenital or early childhood obstruction of the visual axis, for example by lid ptosis or by opacities of the cornea, crystalline lens or vitreous, can give rise to amblyopia by deprivation, as the retina does not receive a clear image (Tailor et al., 2016).

Although it has been reported that amblyopia primarily causes cerebral anatomical alterations in lateral geniculate

bodies and the visual cortex, it can also affect retinal layers and vascular structures (Karabulut et al., 2019).

The pathophysiology of amblyopia has not been fully defined. Neuroanatomy and neurophysiology studies have equated the hypothesis that retinal functional changes are involved in the development of amblyopia (Sobral et al., 2018). However, the nature of the retina's involvement remains unclear (Bruce et al., 2013).

A large number of studies have been recently performed to assess the structural variations in retinal nerve fiber layer (RNFL) in eyes with amblyopia. Contrary to the general belief that the amblyopic eyes are structurally normal, significant alterations have been found in the RNFL, ganglion cell complex and foveal thickness in patients with amblyopia. However, a consensus on retinal abnormalities has not been reached (Bitirgen et al., 2019).

Another region under investigation in amblyopic eyes is the choroid. Spaide et al., 2008 defined enhanced depth imaging (EDI) method using conventional spectral-domain optical coherence tomography (SD-OCT). This new procedure enables measurement of the choroidal thickness (CT) at different locations within the macular and peripapillary regions. Recent studies have reported an increase in macular CT in amblyopic eyes (Bitirgen et al., 2019).