

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Evaluation of Bone Mineral Density and Body Composition in 13 - 14 Years Old Egyptian Females

Thesis

Submitted for Partial Fulfillment of Master degree in Pediatrics

By Manar Khedr El Saied Azab

M.B., B.Ch. Ain Shams University 2012

Under supervision of **Prof. Dr. Mona Rashad Aly Hassan**

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Rana Abdelhakim Ahmed Mahmoud

Lecturer of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Shereen Mohamed Mostafa

Lecturer of Pediatrics
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Mona Rashad Aly Hassan**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Rana Abdelhakim Ahmed Mahmoud,** Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Shereen Mohamed**Mostafa, Lecturer of Pediatrics, Faculty of Medicine, Ain

Shams University, for her great help, active participation and guidance.

Manar Khedr

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction	1
Aim of the Work	3
Review of Literature	
Normal Bone Anatomy and Physiology	4
Development	15
Bone Growth Factors	19
Osteoporosis	23
Dual Energy X-Ray and Pediatric Interpretation	on26
Subjects and Methods	30
Results	33
Discussion	68
Summary and Conclusion	72
References	
Arabic Summary	

List of Abbreviations

Abb.	Full term
25OHD	. 25 hydroxyvitamin D
BMC	. Bones mineral content
BMD	. Bone mineral density
BMI	. Body mass index
BMPs	. Bone morphogenetic proteins
CT	. Computed tomography
DXA	. Dual–energy x-ray absorptiometry
DXR	. Digital X-ray radiogrammetry
FGF	. Fibroblast growth factor
GDFs	. Growth differentiation factors
GH	. Growth hormone
IGF-2	. Insulin-like growth factor 2
LST	. Lean soft tissue
PDGF	. Platelet-derived growth factor
PTH	. Parathyroid hormone
PTHrP	. Parathyroid hormone-related protein
Qct	. Quantitative computed tomography
ΤGF-β	. Transforming growth factor beta

List of Tables

Table No.	Title	Page No.
Table (1):	Distribution of age, weight, height, and their z scores of studied subjects	•
Table (2):	Distribution of milk, cheese, yogurt, bread, beans frequency and amount ar studied subjects	mong
Table (3):	Distribution of vegetables, chicken, egg, meet, fruits, fruits juice frequency amount among studied subjects	y and
Table (4):	Distribution of sweet, herbal bever salt intake, carbonated bever frequency and amount among stusubjects	rages udied
Table (5):	Environmental and socioeconomic fa and score of studied subjects	ctors
Table (6):	Laboratory bone parameters of stu- subjects	
Table (7):	DXA bone parameters of the stusiblect	
Table (8):	Correlation between DXA parameters age of the studied subject	
Table (9):	Correlations between weight, height, their SDS and DXA parameters	BMI, 44
Table (10):	Correlation between DXA parameters and t	food56
Table (11):	Correlation between DXA parameters environmental, socioeconomic factors and so	
Table (12):	Correlation between DXA parameters laboratory parameters	
Table (13):	Correlation between DXA parameters sun exposure.	s and

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Classification of bones by shape	4
Figure (2):	Structure of a long bone	5
Figure (3):	Compact and spongy bone	8
Figure (4):	Cortical bone	8
Figure (5):	Micrograph of cancellous bone	9
Figure (6):	Bone is a metabolically active composed of several types of cells	
Figure (7):	Light micrograph of cancellous deca bone displaying osteoblasts a synthesizing osteoid, containing	ctively two
	osteocytes.	
Figure (8):	Bone growth	
Figure (9):	Section through a juvenile knee join showing the cartilaginous growth pla	
Figure (10):	Correlation between age and whole score	•
Figure (11):	Correlation between age and subtota BMD	-
Figure (12):	Correlation between age and lumbar BMD	spine
Figure (13):	Correlation between age and fem	oral z
Figure (14).	score	
•	Correlation between age and BMC Correlation between BMI and whole	
Figure (15):	score	•
Figure (16):	Correlation between BMI and BMC	
•	Correlation between BMI and subody BMD	ıbtotal
Figure (18):	Correlation between BMI and l spine BMD	umbar

List of Figures Cont..

Fig. No.	Title		Page	No.
Figure (19):	Correlation between BMI and score			48
Figure (20):	Correlation between weight whole body z score	SDS	and	
Figure (21):	Correlation between weight subtotal body BDM	SDS	and	
Figure (22):	Correlation between weight lumbar spine BMD			
Figure (23):	Correlation between weight femoral z score			50
Figure (24):	Correlation between weight SDS	and l	BMC	50
Figure (25):	Correlation between height SDS body z score			51
Figure (26):	Correlation between height subtotal body BMD			51
Figure (27):	Correlation between height lumbar spine BMD			
Figure (28):	Correlation between height femoral z score	SDS	and	
Figure (29):	Correlation between height SDS	and I	BMC	53
_	Correlation between BMI SDS body z score	and v	whole	
Figure (31):	Correlation between BMI Subtotal body BMD			54
Figure (32):	Correlation between BMI SDS as spine BMD			54
Figure (33):	Correlation between BMI SDS ar	nd fei	noral	
	z score			
_	Correlation between BMI SDS ar			55
Figure (35):	Correlation between fruits frequenches spine BMD	·		60

List of Figures Cont.

Fig. No.	Title	Page No.
Figure (36):	Correlation between fruits amo	
Figure (37):	Correlation between fruits frequ BMC	•
Figure (38):	Correlation between fruits amo	
Figure (39):	Correlation between fruits juice fand BMC	- •
Figure (40):	Correlation between fruits juice and BMC	

Introduction

here are 2 main reasons for measuring bones mineral content (BMC) in children: to quantify the deficits in bone minerals associated with the various disorders that cause osteopenia in children and to improve our understanding of the childhood antecedents of osteoporosis, a condition that happens to manifest itself in elderly subjects.

Available data suggest that the genetic susceptibility to osteoporosis may be detectable in early childhood (Gilsanz and Wren, 2007).

Measurement of bone mineral density (BMD) by dualenergy x-ray absorptiometry (DXA) is viewed widely as the method for clinical use in children because of its speed, precision, safety and widespread availability (Binkovitz and Henwood, 2007).

The radiation exposure is comparable to that received during a round trip transcontinental airplane flight (Bachrach, 2005).

Body composition: it is the body fat mass and lean mass (Fahey et al., 2010).

DXA can detect body mass by giving two different types of x-ray to do scanning to the body, one detects all tissues fat

and another that doesn't detect fat. Computers can subtract the second picture from the first one, giving only fat detection. The mass of this can be estimated (Fahey et al., 2010).

AIM OF THE WORK

The aim of this work is to set a standardized pediatric normative database for bone mineral density and body composition in a representative sample of healthy Egyptian females children aged 13-14 years old by dual energy x-ray absorptiometry scanning (DXA) as a part of large study