

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Relation Between Vitamin D Deficiency and Dry Eye

Thesis

Submitted for Partial Fulfilment of Master Degree in Ophthalmology

By

Hagar Ahmed Ezz El-Din Mohamed Anwar

M.B.B.Ch., Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Magda Mohamed Mahmoud Samy

Prof. of Ophthalmology Faculty of Medicine Ain Shams University

Dr. Karim Magdi Naguib

Lecturer of Ophthalmology Faculty of Medicine Ain Shams University

Dr. Nashwa Mohamed Ezzat

Lecturer of Ophthalmology Faculty of Medicine Ain Shams University

Faculty of Medicine
Ain Shams University
2021

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **God**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Magda Mohamed Mahmoud Samy,** Professor of Ophthalmology, Faculty of Medicine – Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Karim Magdi Magaib**, Lecturer of Ophthalmology, Faculty of Medicine – Ain Shams University for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Mashwa Mohamed Ezzat**, Lecturer of Ophthalmology, Faculty of Medicine – Ain Shams University, for her great help, active participation and guidance.

Hagar Ahmed Ezz El - Din

List of Contents

Title	Page No.
List of Tables	
List of Figures	II
List of Abbreviations	IV
Introduction	1
Aim of the Work	3
Review of Literature	
Anatomy	4
Physiology	12
Dry Eye	19
Vitamin D and Effect of Vitamin D Deficiency	33
Patients and Methods	42
Results	48
Discussion	59
Summary	63
Conclusion	66
References	67
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table 1:	The physiochemical chara human precorneal tear film	
Table 2:	DEWS Dry Eye Grading Schen	ne32
Table 3:	Demographic data and charact studied patients	
Table 4:	Comparison between patient control group regarding demonstrates of dry eye, hyperaemia, TFBUT, Shirm Serum 25 OH vitamin D amorpatients.	ographic data, conjunctival ner test and ng the studied
Table 5:	Correlation between serum 25 D with age, TFBUT and Shirm	
Table 6:	Relation of vitamin D level symptoms of dry eye and hyperaemia	conjunctival

List of Figures

Fig. No.	Title	Page No.
Figure 1:	Tear system	
· ·	Histology of the lacrimal gland	
Figure 2: Figure 3:	Diagram summarizing the	
rigure 5.	(trigeminal nerve), secretomotor	•
	nerve) and sympathetic innerva	
	the lacrimal gland	
Figure 4:	Accessory lacrimal glands	9
Figure 5:	Histopathology of corneal epitheli	ium11
Figure 6:	The three-layered structure of t	he tear
	film	14
Figure 7:	The tear film structure	15
Figure 8:	Etiological classification of dry ey	re20
Figure 9:	Classic triad of Sjögren syndrome	e22
Figure 10:	Mechanisms of dry eye	25
Figure 11:	Meibomian gland dysfunction (Me	ibomian
	gland orifices on the eyelid margin	
	by thickened Meibomian secretion).	
Figure 12:	Vital staining of the ocular surfa	
	patient with dry eye disease	
Figure 13:	Schematic representation o	
Ti 14.	synthesis and metabolism of vitar	
Figure 14:	Tear film break up time test	
Figure 15:	Schirmer strips	46
Figure 16:	Sex distribution among the	studied
J	cases	49
Figure 17:	Rate of symptoms of dry eye am	ong the
	studied cases	49
Figure 18:	Rate of conjunctival hyperaemia	_
	the studied cases	49

List of Figures Cont...

Fig. No.	Title	Page	No.
Figure 19:	Comparison between patients' and control group regarding age studied cases	of the	50
Figure 20:	Comparison between patients' and control regarding sex of the scases.	studied	52
Figure 21:	Comparison between patients' and control group regarding syn of dry eye and rate of conjuntyperaemia.	nptoms nctival	52
Figure 22:	Comparison between patients' and control group regarding TFBU Shirmer test	group JT and	
Figure 23:	Comparison between patients' and control group regarding leserum 25 (OH) vitamin D	evel of	53
Figure 24:	Receiver operating characteristic (ROC) for serum 25 (OH) vitamin predictor for symptoms of dry eye.	D as a	54
Figure 25:	Correlation of serum 25 (OH) vita with TFBUT		55
Figure 26:	Correlation of serum 25 (OH) vita with Shirmer test.		56
Figure 27:	Relation of serum 25 (OH) vita level with sex of the studied cases.		57
Figure 28:	Relation of serum 25 (OH) vita level with symptoms of dry eye the studied cases	among	57
Figure 29:	Relation of serum 25 (OH) vita with conjunctival hyperaemia the studied cases	among	58

List of Abbreviations

Abb.	Full term
AIDS	. Acquired immunodeficiency syndrome
AMD	. Age-related macular degeneration
ATD	. Aqueous tear deficiency
AUC	. Area under curve
CN	. Cranial nerve
CD 4	. Cluster of differentiation 4
DED	. Dry eye disease
DEWS	Dry eye workshop study
DR	. Diabetic retinopathy
EDE	. Evaporative dry eye
HIV	. Human immunodeficiency virus
HLA	. Human leukocyte antigen
Ig-A	. Immunoglobulin A
IL-1α	. Interleukin -1 alpha
IOP	. Intraocular pressure
IQR	. Interquartile range
IU	. International unit
LIPCOFs	. Lid-parallel conjunctival folds
MGD	. Mibomian gland dysfunction
NPV	. Negative predictive value

List of Abbreviations Cont...

Abb.	Full term
NSDE	. Non-Sjögren syndrome dry eye
OAG	. Open angel glaucoma
POTF	. Preocular tear film
PPV	. Positive predictive value
PTH	. Parathyroid hormone
RDI	. Recommended daily intake
ROC	. Receiver operating characteristic curve
SPSS	. Statistical package for social science
SSDE	. Sjögren syndrome dry eye
TFBUT	. Tear film break-up time
Th	. T helper cells
TLL	. Tear lipid layer
TNF-α	. Tumour necrosis factor alpha
UVB	. Ultraviolet B
VDR	. Vitamin D receptors

Introduction

Dry eye disease is defined as a "multifactorial disease of the tears and ocular surface that results in symptoms of discomfort, visual disturbance, and tear film instability with potential damage to the ocular surface. It is accompanied by increased osmolarity of the tear film and subacute inflammation of the ocular surface". It is an extremely common condition, particularly in postmenopausal women and the elderly. (1)

Vitamin D is a multifunctional hormone, which not only affects calcium homeostasis, but also plays a role in immune system regulation as well as cell growth and survival. Many tissues in the eye are able to both activate and respond to vitamin D, suggesting that vitamin D is a biologically relevant molecule to study throughout the eye. Epidemiological studies demonstrate that vitamin D levels and genetic variations influence the development of a wide range of ocular pathologies such as myopia, age-related macular degeneration, diabetic retinopathy, and uveitis. In addition, at the cellular level, vitamin D is able to reduce inflammatory mediators, enhance barrier function, and induce cell death of cancerous cells. (2)

Vitamin D can play a role in dry eye due to its secretory and anti-inflammatory properties. Vitamin D deficiency may reduce dopamine function which is responsible for

parasympathetic tone, which may lead to decrease tears (3) secretion. It has a protective function against inflammatory mediators (cytokines) associated with the pathogenesis of dry eye. It may help prevent dry eyes by inducing cathelicidin (an anti-microbial protein produced by corneal and conjunctival epithelial cells), and promotes corneal and conjunctival wound healing. (4)

Aim of the Work

The aim of this study is to demonstrate the relation between vitamin D deficiency and dry eye searching for finding a correlation between dry eye parameters with vitamin D deficiency.