

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Cortical Bone Trajectory in Posterior Lumbar Fixation

A systematic Review for Partial Fulfillment of master Degree in Orthopedic Surgery

By

Mohammed Thapet Faheem

M.B.B.CH

Supervised by

Dr/Mohammed Nabil El Sayed

Assistant Professor of Orthopedic Surgery Faculty of Medicine - Ain Shams University

Dr/Zakaria Hassan Ibrahim

Lecturer of Orthopedic Surgery
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2020-2021

سورة البقرة الآية: ٣٢

First of all, all gratitude is due to Allah almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude **Dr'Mohammed Nabil El Sayed** Assistant Professor of Orthopedic Surgery Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort she has done in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Dr/Zakaria Hassan**Ibrahim Lecturer of Orthopedic Surgery Ain Shams
University, for his continuous directions and support throughout the whole work.

Mohammed Thapet Faheem

List of Contents

Title	Page No.
List of Tables	
List of Figures	i
List of Abbreviations	iv
Introduction	
Aim of Work	
Review of Literature	
Anatomy and Biomechanics o	f Lumber Spine
Cortical Bone Trajectory	28
Materials and Methods	5
Results	58
Discussion	68
Summary and conclusion	68
References	69
Arabic Summary	—

List of Tables

Tab. No.	Title	Page No.
Table (1):	Japanese Orthopaedic Association so low back pain (subjective symptoms)	
Table (2):	Japanese Orthopaedic Association so low back (clinical signs)	
Table (3):	Japanese Orthopaedic Association so low back (restriction of daily activities)	living
Table (4):	Japanese Orthopaedic Association so low back (urinary bladder function)	
Table (5):	Summary of study design of in studies	
Table (6):	Baseline characteristics of included s	studies58
Table (7):	Pathological indications for CF patients in the included studies	
Table (8):	Reported outcomes of CBT in patient the included studies	
Table (9):	Reported overall rate of complication CBT	

List of Figures

Fig. No.	Title	Page No.
Figure (1): Figure (2):	General outline of the spine Curves of the spine	
Figure (3):	The lumbar spine	
Figure (4):	A lumbar vertebra from above behind	and
Figure (5):	Fifth lumbar vertebra from above.	
Figure (6):	The neural foramen	11
Figure (7):	Formation and branching of a tyspinal nerve	_
Figure (8):	The ligaments of the lumbar region	13
Figure (9):	direction of the ligamentous fiber	
	interspinous and suprasp ligaments	
Figure (10):	The epiphysial ring is wider ante and surrounds the hyaline cartilag	riorly inous
Figure (11):	The annulus fibrosus is compose concentric fibrous rings that surre	ed of cound
	the nucleus pulposus	
Figure (12):	transverse section of pos abdominal wall	
Figure (13):	Low back muscles	18
Figure (14):	Motion segment	19
Figure (15):	Dr. Nachemson's study that mea pressures in the L3-4 disc in vapositions	rying

List of Figures Cont...

Fig. No.	Title	Page No.	
Figure (16):	-	f traditional pedicle screw	
Figure (17):	Comparison of	cortical bone trajectory The traditional trajectory	25
Figure (18):	The schematic	diagrams illustrating the of CBT screw	31
Figure (19):	Screws design		32
Figure (20):	· .	oh showing anteroposterior w in CBT	33
Figure (21):		g point in the isthmus- chnique	34
Figure (22):	· .	oh showing anteroposterior w in PS	35
Figure (23):	Flow chart of s	study design	54

List of Abbreviations

Abb. Full term

3D Three dimentions Anterior longitudinal ligament **ALL** ASD Adjacent Segment Disease Bone mineral density **BMD CBT Cortical Bone Trajectory** Cerebro Spinal Fluid **CSF** \mathbf{CT} Computed Tomography Functional spinal unit **FSU** HUHounsfield unit Japanese Orthopedic Association **JOA** NR not reported Oswestry Disability Index **ODI PLL** Posterior longitudinal ligament Traditional trajectory TT Visual Analog Scale **VAS**

INTRODUCTION

edicle screw fixation has been the mainstay technique for lumbar spine stabilization for several decades, its superior biomechanical strength and properties surpassing alternative forms of fixation (1).

Pedicle screw fixation offers multiple advantages, allowing superior correction of spinal deformities, and reduced rates of loss of fixation and non-union Therefore, this technique has been used in the treatment of a number of lumbar disorders such as deformities, fractures, tumors and degenerative disease ⁽²⁾.

The traditional insertion pathway for pedicle screws involves atranspedicular lateral to medial trajectory with the initial insertion point at the junction of the transverse process and lateral wall of the facet joint (3).

Several complications are associated with traditional pedicle screw fixation as Screw misplacement despite the use of navigation techniques (4). Screw loosening and loss of surgical construct stability may occur particularly in patients with osteopenia or osteoporosis (5).

Additional drawbacks include the significant muscle dissection required for pedicle screw insertion because of its lateral to medial trajectory⁽⁶⁾, and increased risk of

neurovascular injury documented by multiple reports of incorrect placement of pedicle screw (7).

Over recent years, there have been a number of developments in screw design and implantation techniques, including a proposal for an alternative trajectory for screw fixation aimed at increasing purchase of the pedicle screw in higher density bone. Santoni et al are The first one to report the cortical bone trajectory (CBT), in which screws follow a lateral path in the axial plane and caudocephalad path in the sagittal plane. In contrast to conventional pedicle screw fixation, CBT screws do not penetrate the vertebral body trabecular space (8).

AIM OF WORK

systematic review discussing cortical bone trajectory in posterior lumber fixation.

Chapter (1)

ANATOMY AND BIOMECHANICS OF LUMBER SPINE

Anatomy of the Lumbar Spine:

- ➤ Bones and joints.
- > Nerves.
- > Connective tissues.
- Muscles.
- ➤ Motion segment.

This section highlights important structures in each category.