

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Correlation between Global Longitudinal and Circumferential Peak Systolic Strain and Coronary Artery Disease Severity as Assessed by the Angiographically Derived SYNTAX Score

Thesis

Submitted for Partial Fulfillment of Master Degree in Cardiology

Presented by

Marian Ibrahim Helmy Ibrahim M.B.B.Ch.

Under Supervision of

Prof.Dr. Ahmed Mohamed Onsy Ibrahim

Professor of Cardiology Faculty of Medicine – Ain Shams University

Prof. Dr. Yasmin AbdelRazek Esmail

Lecturer of Cardiology Faculty of Medicine – Ain Shams University

Dr. Islam Mahmoud Bastawy

Lecturer of Cardiology
Faculty of Medicine – Ain Shams University

Cardiology Department Faculty of Medicine Ain Shams University 2021

First and foremost thanks to ALLAH, the Most Merciful.

I would like to express my deepest appreciation and gratitude to Prof. Dr. Ahmed Mohamed Onsy Ibrahim Professor of Cardiology – Cardiology department Faculty of Medicine – Ain Shams University, for his help in picking this important and up-to-date subject, and for his continuous and unconditional guidance and support.

Special thanks are due to Dr. Yasmin Abdel Razek Esmail, Lecturer of Cardiology, Faculty of Medicine, Ain Shams University, for her sincere efforts, fruitful encouragement.

I am deeply thankful to Dr. Islam Mahmoud Bastawy, Lecturer of Cardiology, Faculty of Medicine, Ain Shams University, for his great help, patience, outstanding support, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Marian Ibrahim Helmy Ibrahim

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	vi
Introduction	1
Aim of the Study	3
Review of Literature	
Echocardiography in ischemic heart disease	4
Speckle tracking echocardiography (STE)	8
The SYNTAX score	16
Patients and Methods	20
Results	31
Discussion	49
Study Limitations	57
Conclusion	58
Recommendations	59
Summary	60
References	63
Appendix	I
Arabic Summary	

List of Abbreviations

Abbr. **Full-term**

American college of cardiology ACC

AHA American heart association

Apical 2 chamber longitudinal strain AP2LS Apical 3 chamber longitudinal strain AP3LS Apical 4 chamber longitudinal strain AP4L S

Blood pressure BP

Coronary artery bypass graft **CABG**

Coronary artery disease CAD

Cardiac magnetic resonance imaging **CMR**

Cardiovascular disease **CVD**

DSE Dobutamine stress echocardiography

ECG Electrocardiogram EF Ejection fraction

Global circumferential peak systolic strain **GCPSS**

GCS Global circumferential strain

GE General electric

GLPSS Global longitudinal peak systolic strain

GLS Global longitudinal strain HbA1C Glycated hemoglobin

Highly-significant HS

International classification of patient safety **ICPS**

IHD Ischemic heart disease

 $\mathbf{L}\mathbf{V}$ Left ventricle

Time-motion mode M-mode

Magnetic resonance imaging MRI

MVD Multivessel disease Non-significant NS

Percutaneous coronary intervention PCI

PP Post prandial **ROI** : Region of interest

S : Significant

SAX A S
Short axis apical level strain
SAX B S
Short axis basal level strain
SAX M S
Short axis mid-level strain

SD : Standard deviation

SPECT: Singlephoton emission computed tomography

SPSS: Statistical Package for Social Science

SS : SYNTAX score

STE : Speckle tracking echocardiography

2D : Two -dimensional

2D STE : Two dimensional speckle tracking

echocardiography

2DE : Two dimensional echocardiography

List of Tables

Table No	Title	Page	No.
Table (1):	Factors affecting lesion scoring SYNTAX Score		
Table (2):	Basic demographic data	• • • • • • • • • • • • • • • • • • • •	32
Table (3):	GLPSS distribution among the patients		
Table (4):	GCPSS distribution among the patients		
Table (5):	SYNTAX score distribution amo studied patients	_	
Table (6):	Relationship between SYNTAX assessed angiographically and demo data and ejection fraction of the patients	graphic studied	
Table (7):	Relationship between SYNTAX assessed angiographically and cardiovascular risk factors.	different	-
Table (8):	Relationship between SYNTAX sco Global longitudinal peak systolic strain		
Table (9):	Relationship between SYNTAX sco Global circumferential peak systolic		
Table (10):	Correlation of SYNTAX score with and GCPSS		

List of Figures

Figure No	o. Title Pag	e No.
Figure (1):	Each myocardial segment can be evaluated according to wall thickening and wall motion assessments	ng
Figure (2):	M-mode echocardiography from parasternal short-axis view showing the left ventricular cavity over the cardiacycle during systole and diastole	ne ac
Figure (3):	Speckle-tracking echocardiographic analysis of myocardial deformation showing measurements of longitudinal strain (A radial strain (B), and circumferential strain (C).	ng A), in
Figure (4):	2D apical two-chamber view with speck tracking showing a significant decrease longitudinal strain within the bas inferior wall (yellow segment, arrow with a clear post-systolic deformation (arrow) on the yellow curve.	of al w) on
Figure (5):	Illustrations of the Steps involved speckle tracking echocardiography	
Figure (6):	Measurement of circumferential strain the left ventricular short-axis views apical (a), mitral valve (b), and basal (level with the region of interest at each level	at c) ch
Figure (7):	Sex distribution among the studie patients	

Figure (8):	Percentage of risk factors among the studied patients
Figure (9):	Number of other risk factors among the studied patients
Figure (10):	GLPSS distribution among the studied patients
Figure (11):	GCPSS distribution among the studied patients
Figure (12):	SYNTAX score distribution among the studied patients
Figure (13):	Relationship between SYNTAX score and age distribution among the studied patients
Figure (14):	Relationship between R SYNTAX score and sex distribution among the studied patients
Figure (15):	Relationship between SYNTAX score and Global longitudinal peak systolic strain as assessed by different echocardiographic views
Figure (16):	Correlation between SYNTAX score and GLPSS
Figure (17):	Correlation between SYNTAX score and GCPSS

Introduction

The diagnosis and assessment of chronic coronary syndrome involves clinical evaluation, identifying risk factors for atherosclerosis, and specific cardiac investigations such as different stress testing modalities and coronary imaging (*Bösner et al.*, 2010).

Despite the widespread use of imaging and provocative testing, the non-invasive identification of patients with coronary artery disease remains a clinical challenge; more than half of the patients had normal or non-obstructive coronary artery disease on coronary angiography (*Patel et al., 2010*).

The strain values are better than either wall motion or tissue Doppler in the assessment of regional contraction. Also, strain can be used in assessing myocardial viability either at rest or with stress (*Bansal et al.*, 2010).

Significant coronary artery stenosis might cause persistently impaired longitudinal left ventricular function at rest, so 2D-STE is more accurate than conventional 2D echocardiography in evaluating the regional and global myocardial function and assessing infarct size, the viability of the infarcted myocardium, and mild changes of myocardial ischemia (*Montgomery et al.*, 2012).

STE is a simple, rapid, and accurate method for evaluating the myocardial function, so it is best to assess regional contractile function by measuring peak systolic strain rate or rate of increase of strain rate (*Witkowski et al.*, 2012).

The longitudinal strain provides a good quantitative myocardial deformation assessment of each LV segment allowing early detection of systolic dysfunction in patients with preserved LV ejection fraction (*Shivu et al.*, 2009).

The use of STE longitudinal strain can detect and riskstratify coronary artery disease with good accuracy and reproducibility.

Strain and strain rate are homogeneously distributed across the myocardium, so mild changes in either measure suggest myocardial dysfunction. Although strain imaging has a potential role in the diagnosis and management of virtually any myocardial disease, its greatest role is in the detection of ischemic heart disease (*Jamal et al.*, 2002).

Aim of the Study

The main objective of the current study is to assess the correlation between the SYNTAX score in patients undergoing elective coronary angiography and the longitudinal and circumferential peak systolic strain performed at rest by speckle tracking echocardiography to predict the presence, extent, and severity of coronary artery disease.

Chapter (1) Echocardiography in ischemic heart disease

schemic heart disease also known as coronary artery disease is one of the major causes of morbidity and mortality. Since the mortality and morbidity of IHD, improve following early treatment, timely diagnosis is of vital importance not only to help the patient who sometimes presents with atypical symptoms or non-diagnostic (ECG) changes or normal cardiac enzyme levels but also to reduce hospital stay and economic costs (*Esmaeilzadeh et al.*, 2013; *Votavová et al.*, 2015).

Imaging techniques represent the key method for disease extent and severity assessment and evaluation of hemodynamic complications. Two-dimensional echocardiography is a non-invasive diagnostic technique and one of the most useful imaging methods which has emerged as a dominant and indispensable technique for the detection and assessment of coronary heart disease due to its accessibility, cost-effectiveness, lowest risk, and its ability to serve as bedside technique and repeatability. It is also is the most frequently utilized cardiovascular diagnostic test after ECG (*Chaves et al.*, 2004; *Esmaeilzadeh et al.*, 2013).