

بسم الله الرحمن الرحيم

HOSSAM MAGHRABY

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HOSSAM MAGHRABY

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

HOSSAM MAGHRABY

COMPUTER SCIENCE DEPARTMENT FACULTY OF COMPUTER AND INFORMATION SCIENCES AIN SHAMS UNIVERSITY

Computational Intelligence Techniques in Music Composition

A thesis submitted to the Department of Computer Science,
Faculty of Computer and Information Sciences,
Ain Shams University, Cairo, Egypt.

In partial fulfillment of the requirements for the degree of Doctor of Philosophy, Ph.D. in Computer Science

By

Nermin Naguib Jean Siphocly

Assistant Lecturer in the Department of Computer Science,
Faculty of Computer and Information Sciences,
Ain Shams University, Cairo, Egypt.

Under the Supervision of

Prof. Dr. Abdel-Badeeh M. Salem

Professor of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University, Egypt.

Prof. El-Sayed M. El-Horbaty

Professor of Computer Science Faculty of Computer and Information Sciences, Ain Shams University, Egypt.

> May 2021 Cairo, Egypt

Acknowledgments

"Thus far the LORD has helped us."

My deepest gratitude goes to God who helped me to get this far in my Ph.D. journey, feeling His presence in the hard as well as the good times.

I wish to express my sincere appreciation for my supervisors: Prof. Abdel-Badeeh M. Salem and Prof. El-Sayed M. El-Horbaty for their continuous efforts, support, encouragement, and guidance.

Last but not least, profound thanks go to my family; my parents and my husband, for always being in my back and for their continuous and unconditional love.

Nermin Siphocly

May 2021

Abstract

Engaging computers in composing musical pieces is a challenging and trending field of research. The musical tasks that can be performed or aided by computers' computational powers, are numerous. This thesis is concerned with computational intelligence techniques in music composition. Its main objective is to introduce various intelligent techniques for performing miscellaneous music composition tasks. To achieve this objective, the thesis first provides a thorough survey on the most famous artificial intelligence algorithms used in computer music composition discussing their applications, strengths, and weaknesses. The thesis then proposes multiple applications adopting some of the studied artificial intelligence and machine learning algorithms; including rule-based, case-based reasoning, artificial neural networks, and the relatively new: "generative adversarial networks".

The contributions of this thesis include: First, providing a comprehensive survey on the field of computer music generation highlighting the most famous adopted algorithms, their most recent applications, their weaknesses, and strengths. Second, proposing an intelligent algorithm for major/minor melody conversion, comparing between rule-based and case-based reasoning in performing the task. This application also introduces a smart method for musical scale detection.

Third, developing an intelligent secondary melody generator with two techniques: artificial neural networks and case-based reasoning. Fourth, comparing between both techniques in performing the task of secondary melody generation. The comparison results show that case-based reasoning secondary melody generator outperformed the artificial neural networks generator by a success percentage of 50%.

Fifth, presenting a novel approach for accompaniment generation using pix2pix generative adversarial networks which is considered from the state-of-the-art in the machine learning area. Sixth, presenting a novel musical data representation which enhanced the pix2pix network training and the overall results. Specifically, this work suggests using color encodings to represent music notes inside images. Experimental results show that the proposed music representation achieved better results on pix2pix GANs over the traditional representations, reaching a loss function value of 0.001.

Seventh, studying the effectiveness of the proposed color encoded data representation showing that it outperformed the previously known representations. Eighth, proposing a post-processing technique on the generated images for enhancing the quality of the generated music, based on erosion. Ninth, to introducing two music evaluation metrics to automate the assessment of the generated music based on harmony and dissimilarity. Experimental results show that the proposed post-processing technique enhanced the musical harmony and the dissimilarity of the generated music by 51.26% and 81.98% respectively. Finally, listing multiple promising ideas for future work and research related to the field of computer music generation.

Table of Contents

Acknowledgments	i
Abstract	ii
List of Tables	Vii
List of Figures	Viii
List of Abbreviations	
List of Algorithms	xii
List of Publications	Xiii
Chapter 1 Introduction	1
1.1 Classification of Computer Music Applications	2
1.2 Thesis Problem Statement	4
1.3 Thesis Objective	5
1.4 Research Methodology	6
1.5 Thesis Contributions	6
1.6 Thesis Organization	8
Chapter 2 Background and Related Work	10
2.1 Music Improvisation Systems	10
2.2 Music Expressiveness Systems	13
2.3 Music Composition Systems	15
2.3.1 Music Composition Tasks	15
2.3.2 Music Composition Applications	16
2.4 Brief Musical Background	
Chapter 3 Artificial Intelligence Algorithms in Computer Music Composition	
3.1 Rule-Based Systems	21
3.1.1 Overview and Description	21
3.1.2 Rule-Based Systems in Algorithmic Composition	24
3.2 Case-Based Reasoning	
3.2.1 Overview and Description	
3.2.2 CBR in Algorithmic Composition	26
3.3 Markov Chains	
3.3.1 Overview and Description	
3.3.2 Markov Chains in Algorithmic Composition	
3.4 Generative Grammars	
3.4.1 Overview and Description	
3.4.2 Generative Grammar in Algorithmic Composition	
3.5 Linear Programming	
3.5.1 Overview and Description	
3.5.2 Linear Programming in Algorithmic Composition	
3.6 Genetic Algorithms	41

3.6.1 Overview and Description	42
3.6.2 GAs in Algorithmic Composition	
3.7 Artificial Immune Systems	
3.7.1 Overview and Description	
3.7.2 AIS in Algorithmic Composition	
3.8 Artificial Neural Networks	
3.8.1 Overview and Description	52
3.8.2 ANNs in Algorithmic Composition	
3.9 Deep Neural Networks	58
3.9.1 Overview and Description	58
3.9.2 DNNs in Algorithmic Composition	60
3.10 Generative Adversarial Networks	
3.10.1 Overview and Description	63
3.10.2 GANs in Algorithmic Composition	
3.11 Comparison and Discussion of AI Algorithms in Music Composit	tion69
3.12 Summary	
Chapter 4 Proposed Intelligent Techniques for Automating the Conver	sion between
Major and Minor Melodies	
4.1 Methodology	79
4.1.1 rule-based system in major/minor conversion	
4.1.2 CBR in Major/Minor Conversion	
4.2 Implementation	
4.3 Experimental Results	
Chapter 5 Proposed Intelligent techniques for Automating Secondary 1	
Generation	
5.1 Methodology	94
5.1.1 Secondary Melody Generation using Artificial Neural Netwo	
Algorithm.	
5.1.2 CBR in Secondary Melody Generation	
5.2 Implementation	
5.3 Experimental Tests and Results	
5.3.1 Experimentation with ANN parameters	
5.3.2 ANN versus CBR Models Experimental Results	
5.4 Discussion	
Chapter 6 Proposed Intelligent Technique Based on Deep Learning for A	
Music Generation	
6.1 Methodology	
6.1.1 Data Representation	
6.1.2 Network Architecture	
6.1.3 Post-Processing	
6.1.4 Music Evaluation Metrics	
6.1.5 Data Representation Variation	114

6.2 Implementation	17
6.3 Experimental Tests and Results	
6.3.1 Proposed Color Encoded Versus B/W Data Representation	17
6.3.2 Original Versus Dilated Data Representation	
6.4 Discussion	
Chapter 7 Conclusions and Future Works	23
References	

List of Tables

Number	Page
Table 2.1 - Summary of AI techniques used in improvisation	11
Table 2.2 - Summary of AI techniques used in expressiveness	14
Table 3.1 - Comparison of generative grammars	35
Table 3.2 - Comparison between absolute and relative pitch	45
Table 3.3 - Comparison between the top 10 AI algorithms in computer music	67
Table 5.1 - Minimum error for each network set-up	99
Table 5.2 - ANN and CBR generators test results	101
Table 6.1 - Comparison between original and dilated representations without post-processing	120
Table 6.2 - Comparison between original and dilated representations with post-processing	120

List of Figures

Number	Page
Figure 1.1 - Classification of computer music generation systems	3
Figure 2.1 - Piano	19
Figure 2.2 - (a) C Major scale notes, (b) C Minor scale notes	19
Figure 3.1 - Forward chaining algorithm	22
Figure 3.2. Backward chaining algorithm	23
Figure 3.3. CBR cycle diagram	25
Figure 3.4. (a) Markov state space graph example - (b) Markov transition matrix example	28
Figure 3.5. Forward algorithm (adapted from [59])	30
Figure 3.6. Viterbi algorithm (adapted from [59])	30
Figure 3.7. Baum-Welch algorithm (adapted from [59])	31
Figure 3.8 - Derivation of a generative grammar	35
Figure 3.9 - Chomsky hierarchy	35
Figure 3.10. Graph of linear programming model for a two decision variables problem	39
Figure 3.11. Simplex algorithm (basic version)	40
Figure 3.12. The genetic algorithm	42
Figure 3.13. Examples on mutation and crossover	43
Figure 3.14 Negative selection algorithm (reproduced from [76])	49

Figure 3.15. Clonal selection algorithm (reproduced from [76])	50
Figure 3.16. Artificial neuron (adapted from [80])	52
Figure 3.17. Backpropagation algorithm (adapted from [82])	56
Figure 3.18. Convolutional neural network architecture (adapted from [86])	59
Figure 3.19. Convolution pseudocode (adapted from [87])	60
Figure 3.20. Generative adversarial aetwork architecture (adapted from [93])	63
Figure 4.1 - Rule-based major/minor conversion algorithm	82
Figure 4.2 - Case adaptation visual example	85
Figure 4.3 - Case-based major/minor conversion algorithm.	85
Figure 4.4 - (a) Rule-based versus case-based major/minor conversion (b) Rule-based versus case-based conversion error rate per scale	90
Figure 4.5 – Major to minor melody conversion sample with CBR	91
Figure 5.1 - CBR secondary melody generation pseudocode.	97
Figure 5.2 - Training loss graphs relevant to the network parameters changes	100
Figure 5.3 - Average error of mismatches	102
Figure 5.4 - Secondary melody generation sample with CBR	103
Figure 6.1 - Sample of main melody represented as an image	107
Figure 6.2 - A magnified sample of the color encoded accompaniment music	108
Figure 6.4 - Architecture of the generator network	109
Figure 6.3 - Architecture of the discriminator network	.110
Figure 6.5 - Sample piano-roll of the generated accompaniment music	111
Figure 6.6 - The 3X3 structuring element used in the proposed post-processing technique	112

Figure 6.7 - The result of applying the proposed post-processing technique	112
Figure 6.8 - Snapshot of the original proposed data representation (left) and its dilated variation (right).	115
Figure 6.9 - The loss curves for pix2pix GANs trained with b/w images (left column) v the proposed coloring schemed images (right column)	
Figure 6.10 - Samples from the output of the pix2pix training with b/w representation (upper row) versus the proposed color encoded representation (lower row)	119

List of Abbreviations

AI Artificial Intelligence

AIS Artificial Immune System

AN Artificial Neuron

ANN Artificial Neural Network
BM Basis function Model

BN Bayesian Network

CBR Case-Based Reasoning

CNN Convolutional Neural Network

CRBM Conditional Restricted Boltzmann Machine
CRBM Convolutional Restricted Boltzmann Machine

DFA Deterministic Finite state Automaton

DNN Deep Neural Network

FO Factor Oracle

GA Genetic Algorithm

GAN Generative Adversarial Network

HMM Hidden Markov Model

IE Inference Engine KB Knowledge Base

LSTM Long Short-Term Memory

NFA Non-deterministic Finite state Automaton PTGG Probabilistic Temporal Graph Grammar

RNN Recurrent Neural Network

TIS Tonal Interval Space

WCL Weighted Centroid Localization

WM Working Memory