

بسم الله الرحمن الرحيم

HOSSAM MAGHRABY

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HOSSAM MAGHRABY

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

HOSSAM MAGHRABY

Primary Repair of Anterior Cruciate Ligament Tear A Systematic Review

Submitted for Partial Fulfillment of Master Degree in **Orthopedics**

By

Fraig Amin Fraig

M.B.B.Ch., Faculty of Medicine, Minya University

Under Supervision of

Prof. Dr. Mohamed Hassan Sobhy

Professor of Orthopaedic Surgery Faculty of Medicine, Ain Shams University

Dr. Mostafa Aly El Abd

Lecturer of Orthopaedic Surgery Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2021

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Mohamed****Thassan Sobhy, Professor of Orthopaedic Surgery, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Mostafa Aly El Abd**, Lecturer of Orthopaedic Surgery, Faculty
of Medicine, Ain Shams University, for his sincere
efforts, fruitful encouragement.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Fraig Amin Fraig

Tist of Contents

Title	Page No.
List of Tables	4
List of Figures	5
List of Abbreviations	8
Introduction	1 -
Aim of the Work	5
Review of Literature	
 Anatomy and Biomechanics of Cruciate Ligar Knee 	
Anterior Cruciate Ligament Injury	24
Anterior Cruciate Ligament Repair	41
Materials and Methods	55
Results	58
Discussion	66
Summary and Conclusion	75
References	77
Arabic Summary	

Tist of Tables

Table N	lo. Title	Page No.
Table 1:	Incidence of Tear Type Based on Resonance Imaging	•
Table 2:	Summary Characteristics of the include	ed studies 60
Table 3:	Baseline of the included studies	62
Table 4:	Baseline of the included studies	63
Table 5:	Postoperative Complications of the studies	

List of Figures

Fig. No.	Title	Page No.
Figure 1:	Radiological position of the tunnels coronal and the sagittal view reconstruction of the anterior ligament	ws after cruciate
Figure 2:	Tibial plateau showing the menisci a relationship to the ACL an attachments.	and their d PCL
Figure 3:	Role of cruciate ligaments in biomecknee joints	hanics of
Figure 4:	Anteromedial (light gray) and poster (dark gray) bundles of the anterior ligament in a right knee	erolateral cruciate
Figure 5:	Femoral and tibial attachments anteromedial (light gray) and poste (dark gray) bundles of the anterior	of the erolateral cruciate
Figure 6:	ligament in a right knee	ruction of
Figure 7:	An arthroscopic view of the attachment site of the anterior ligament in a right knee	femoral cruciate
Figure 8:	Anterior view of the tibial attachme the anterior cruciate ligament in a right knee	nt site of cadaveric
Figure 9:	Superior view of the tibial plateau of knee demonstrates the location anterior cruciate ligament tibial relative to the root of the anterior ho	of a right of the insertion orn of the
Figure 10:	Schematic showing the multi-plana mechanism of non-contact injury anterior cruciate ligament	r loading to the

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 11:	High resolution imaging normal cruciate ligament in oblique coro oblique sagittal planes	nal and
Figure 12:	Primary signs of anterior cruciate tear	-
Figure 13:	High resolution imaging anterior ligament in oblique axial plane	cruciate
Figure 14: Figure 15:	Partial tear of the anterior cruciate li A type I tear (arrow) is shown on sagittal T1-weighted view and (B) a weighted view	the (A) axial T1-
Figure 16:	A type II tear (arrow) is shown on sagittal T1-weighted view and (B) a weighted view	the (A) axial T1-
Figure 17:	(A) A type III tear (arrow) is shown sagittal T1-weighted view and (B) more complex type III tear (arrow) on the sagittal T1-weighted view	another is shown
Figure 18:	A type IV tear (arrow) is shown or sagittal T1-weighted view and (B) sagweighted view	gittal T2-
Figure 19:	A type V soft tissue avulsion tear (a seen on the (A) sagittal T1-weighted (B) coronal T1-weighted view	arrow) is view and
Figure 20:	A type V bony avulsion (arrow) is see (A) sagittal T1-weighted view and (B T1-weighted view	en on the) coronal
Figure 21:	Sherman classification	36
Figure 22:	Arthroscopic appearance of a vertical cruciate ligament strut in the left kne	ee 37
Figure 23:	Acute ACL avulsion from the attachment point	

Tist of Figures cont...

Fig. No.	Title Page N	10.
Figure 24:	Acute midsubstance tear of the ACL in a case	
Figure 25:	of combined ACL-PCL-LCL tear	
Figure 26:	Dynamic Intraligamentary Stabilisation (Mathys Medical TM)	
Figure 27:	Left knee frontal view	49
Figure 28:	Internal Brace Ligament Augmentation (Arthrex TM)	
Figure 29:	Stepwise demonstration of the bridge- enhanced ACL repair (BEAR) technique using the BEAR scaffold	!
Figure 30:	PRISMA flow-chart	

Tist of Abbreviations

Abb.	Full term
ACI	Antonion anuciato licamont
	Anterior cruciate ligament Anteroposterior
	<u>-</u>
	Bridge-Enhanced ACL Repair
	Bridge-enhanced ACL repair
CENTRAL	Cochrane Central Register of Controlled Trials
CI	Confidence interval
	Dynamic Intraligamentary stabilisation
	Fibroblast Growth Factor 2
	Growth and Differentiation Factor
	Internal brace ligament augmentation
	International committee of medical journal
	association
<i>LFC</i>	Lateral femoral condyle
	Medial Collateral Ligament
<i>MD</i>	Mean difference
<i>MOOSE</i>	Meta-analysis Of Observational Studies in
	Epidemiology
MRI	Magnetic Resonance Imaging
PCL	Posterior cruciate ligament
<i>PDGF</i>	Platelet Derived Growth Factor
<i>PE</i>	Polyethylene
PRISMA	Preferred Reporting Items for Systematic
	Reviews and Meta-Analyses
<i>PROMS</i>	Patient related outcome scores
<i>PRP</i>	Platelet rich plasma
RCTs	Randomized controlled trials
<i>RR</i>	Relative risk
<i>SD</i>	Standard deviation
<i>SMD</i>	Standardized mean difference
<i>TGF</i>	Transforming Growth Factor
VEGF	Vascular Endothelial Growth Factor

Primary Repair of Anterior Cruciate Ligament Tear Prof. Dr. Mohamed Hassan Sobhy, Dr. Mostafa Aly El Abd, Fraig Amin Fraig

Orthopaedic Surgery Department, Faculty of Medicine, Ain Shams University Corresponding author: Fraig Amin Fraig; Email: fraig.amin@gmail.com; Phone: 01000007940

ABSTRACT

Background: Initially, authors reported deterioration in the outcomes of ACL open primary repair. Consequently, authors considered ACL reconstruction surgery as the gold standard approach in treating ACL injuries. Recently, with the introduction of modern-day technology such as MRIs and arthroscopic repair, emerging reports gained interest in reevaluating the outcomes of primary repair.

Aim of the work: We aim to evaluate to evaluate the results of different techniques regarding ACL repair, and determine the ideal candidates for this procedure

Patients and Methods: We conducted an electronic search via PubMed, SCOPUS, Web of Science, Cochrane Central Register of Controlled Trials (CENTRAL), and Google Scholar from their inception till August 2020. We included randomized, nonrandomized trials, prospective or retrospective cohort and case control studies that were published in English with full text available. We restricted our search to patients diagnosed with acute ACL tear whom underwent open or arthroscopic ACL repair. Outcomes of interest were Functional outcomes (Lysholm, Bivot and Lachman scores), complications and failure rates.

Results: From a total 2089 screened citations, 24 studies met our inclusion criteria. Eleven studies evaluated primary ACL suture repair of the (1 study used a biologic scaffold in the ACL repair, 4 used microfracturing techniques, and 5 used some form of mechanical augmentation). The remaining 11 studies used dynamic intraligamentary stabilization (DIS). There was male predominance across the studies, with patients aged between 6 to 43.3 years and patients were follow-up to 16 years. There was a wide range of ACL repair survivorship between 60 % and 100% with reoperation rate ranged between 0 % and 51.5%. Re-rupture of the ACL, revision ACLR procedures, and implant removal were as high as 18.2%, 20%, and 100%, respectively. However, results were improved when ACL repair was combined with biological enhancers e.g. microfracturing and scaffolding. In the four comparative studies (primary repair vs. ACLR), there was no significant difference between both approaches regarding; IKDC, Lysholm, Tegner and Lachman, scores.but ACLR was slightly superior in certain outcomes e,g, failure rates and proper positioning.

Conclusion: We found that still ACL reconstruction is superior to ACL primary repair however, with strict selection criteria mainly; proximal ACL rupture and excellent tissue quality, primary ACL repair could be reconsidered as an effective treatment especially when combined with microfracturing and scaffolding.

Keywords: Primary Repair, Anterior Cruciate Ligament Tear

Introduction

Tigamentous injury in the athlete is a major cause of morbidity and time away from sport. Ligamentous repair remains an ongoing aspiration in the treatment of athletic patients in order to try and facilitate a rapid and complete return to high level sporting activity. Knee ligament injuries can have devastating consequences on the sporting career of athletes. In particular, we will focus on the anterior cruciate ligament (ACL) ligament injury and ligamentous repair techniques (1).

Anterior cruciate ligament injury:

Account for anywhere between 25 and 50% ligamentous knee injuries and pose unique clinic problems because of its poor capacity to undergo biological healing due to the local intra-articular conditions. A potential theory to explain this is that the synovial fluid and intra-articular movement prevents formation of a stable fibrin-platelet scaffold. Without this scaffold, no primary healing can take place. This poor capacity of the ACL to heal is one of the main reasons why the current gold standard surgical treatment for an ACL injury in an athletic patient is ACL reconstruction (2). The results of ACL reconstruction are good but current techniques do pose their own challenges and potential issues as, donor site morbidity, loss of proprioception or incomplete return to highrisk sports (3).

There is also significant evidence to suggest that ACL reconstruction does not prevent future osteoarthritis ⁽⁴⁾.

So, two major motivators for developing a new treatment for ACL injuries because of the recently reported high rates of osteoarthritis, after conventional ACL reconstruction, and the problem of how to safely treat skeletally immature patients.

Injury of the anterior cruciate ligament (ACL) was considered to be rare in the pediatric and adolescent population in the twentieth century. However, with the increase in sports participation of this patient population, and the greater clinical awareness along with modern diagnostic imaging, the incidence of ACL injuries has increased over the last decades in this population (5).

Although reconstruction transphyseal grafts is currently the gold standard still believed to be a risk factor for limb length and angular deformities in skeletally immature patients with risk of iatrogenic damage of the distal femoral or the growth plate, and proximal tibial subsequent growth disturbance and angular deformity in adolescents. Specially such injuries of ACL has been steadily rising for skeletally immature patients ⁽⁶⁾.

However, the prepubescent population could benefit greatly from a regenerative treatment, which does not require violation of the physes, and, as has been shown recently, this

group of patients may have the potential to respond most strongly to the biological stimuli used in current enhanced repair techniques. A repair procedure which does not involve transphyseal drilling, therefore, has a lower risk profile of physeal complications ⁽⁷⁾.

Regeneration of the ACL, rather than replacement with a similar type of tissue, has the potential to preserve the proprioceptive nerve fibers and the complex architecture of the ligament insertion side, features that are usually not reproduced by tendon grafts. This could potentially lead to more normal biomechanics of the knee if adequate regeneration is achieved ⁽⁸⁾.

Primary repair, if successful, can theoretically lead to a significant improvement in the treatment of ACL injuries in the athlete. In particular, the improvements in retention of proprioception and native kinematics could be a significant advancement. Novel techniques for primary ACL repair have developed considerably in recent years and now employ the full gambit of advanced techniques currently available ⁽⁹⁾.

Multiple growth factors have been evaluated in vitro and in vivo for ACL healing. Transforming Growth Factor Beta 1, Fibroblast Growth Factor 2 (FGF-2), Growth and Differentiation Factor (GDF) 5 and GDF-7 have been shown to stimulate type I collagen production in ACL-derived cells in vitro, whereas Insulin-like Growth Factor I did not result in substantial increases. In vivo studies by Kobayashi et al. showed that FGF-