

بسم الله الرحمن الرحيم

HOSSAM MAGHRABY

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HOSSAM MAGHRABY

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

HOSSAM MAGHRABY

Ain Shams University Faculty of Women for Arts, Science & Education

Zoology Department

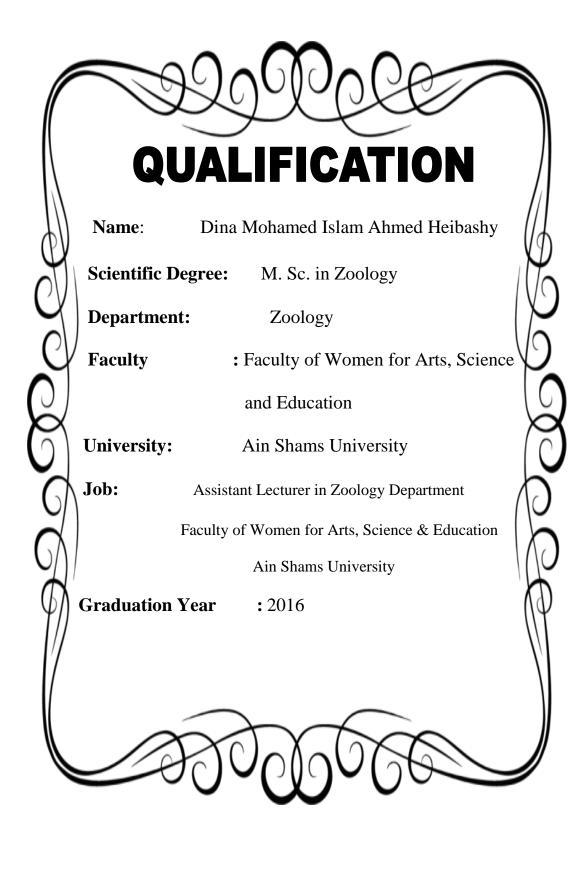
Evaluation the Therapeutic Role of L-carnitine Alone or Associated with some Antioxidants on Myocardial Dysfunction in Septic Rats

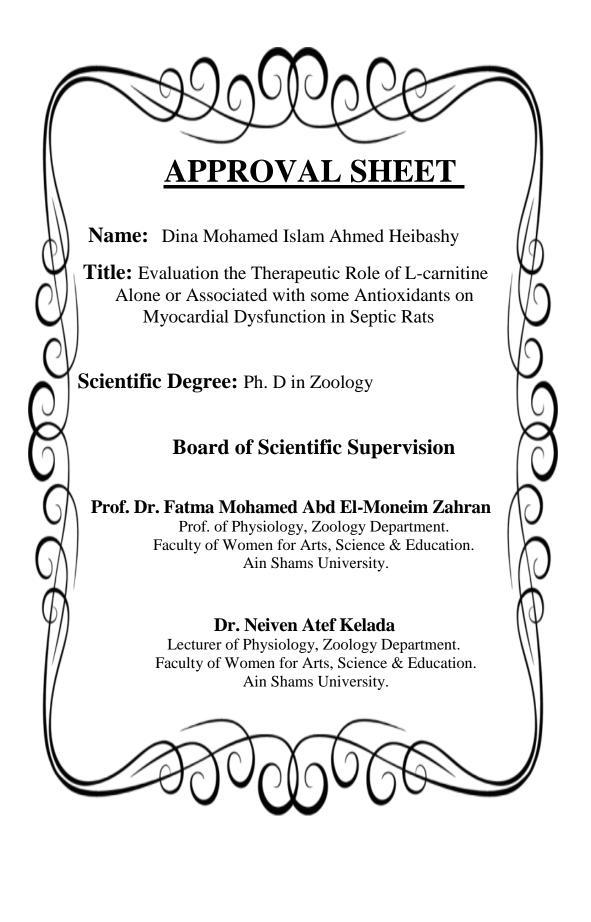
Submitted in Partial Fulfillment for the Requirements for the Degree of Ph. D of Science in Zoology

By

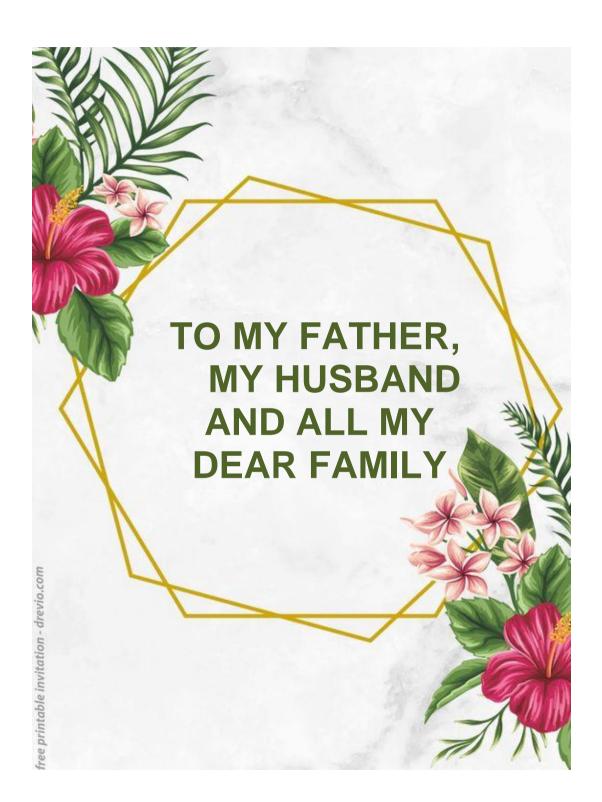
Dina Mohamed Islam Ahmed Heibashy Assistant Lecturer in Zoology Department Faculty of Women for Arts, Science & Education Ain Shams University

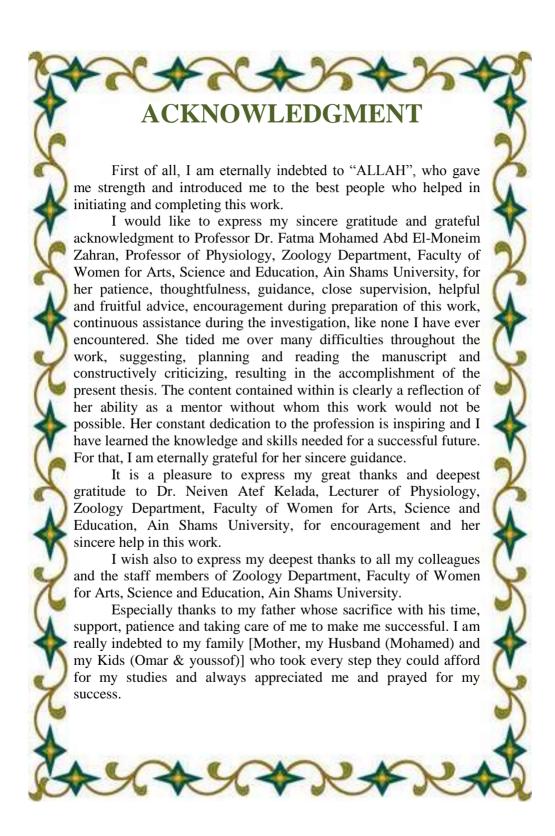
Board of Scientific Supervision


Prof. Dr. Fatma Mohamed Abd El-Moneim Zahran


Prof. of Physiology - Zoology Department Faculty of Women for Arts, Science & Education Ain Shams University

Dr. Neiven Atef Kelada


Lecturer of Physiology -Zoology Department
Faculty of Women for Arts, Science & Education
Ain Shams University


(2021)

ABSTRACT

Abstract

The objective of this study was to evaluate the ability of L-carnitine (LC) alone or associated with coenzyme Q10 or/and α -lipoic acid to improve myocardial dysfunction in septic rats. Sepsis was induced by administering Lipopolysaccharides (LPS) in a single dose of 5mg/kg body weight intraperitoneally (i.p) to the rats, which were being treated daily with L-carnitine alone or with coenzyme Q10 or α -lipoic acid as well as their mixture for two weeks after three days of LPS injection.

Sixty adult male albino rats were employed in this work. This study was included two experiments and carried out as the following: In the first experiment, the rats were randomly divided into two main groups. In the first rats group, 15 rats were injected intraperitoneally (i.p) with saline solution and served as normal control rats group. The second animals group (45 septic rats), these rats were injected intraperitoneally (i.p) with a single dose of LPS (5mg/kg body weight). After three days of LPS injection (induction of endotoxin), five rats from each previous group were taken to compare the alterations in the serum heart enzymes activity, biochemical markers, lipids profile and cytokines profile as well as the changes in oxidative and antioxidant status in the heart tissues due to experimentally induction of sepsis associated with cardiovascular disease (CVD) in rats. In the second experiment (50 rats), five comparisons were made between normal control animals group (10 rats) and four septic (LPS) subgroups of animals (40 rats); 10 rats in each one. The first septic rats subgroup was treated daily with 200mg L-carnitine/kg body weight by oro-gastric tube for 14 days (LPS+LC subgroup). The second septic rats subgroup was treated daily with both 200mg L-carnitine and 200mg coenzyme O10/kg body weight by oro-gastric tube for the same previous period (LPS+LC+CoQ10 subgroup). The third septic rats subgroup was treated daily with both 200mg L-carnitine and 100mg α -lipoic acid/kg body weight by oro-gastric tube for the same manner (LPS+LC+ALA subgroup). Finally, the fourth septic rats subgroup was treated daily with a combination of L-carnitine, coenzyme Q10 and a-lipoic acid by oro-gastric tube for the same pattern period (LPS+LC+CoQ10+ALA subgroup). All animals in the previous subsets and normal control group were divided into two periods (7&14 days).

The obtained data revealed remarkable changes in serum heart enzymes profile (CK,CK-MB, LDH and AST), cardiac profile (H-FABP, myoglobin, endothelin-1, resistin and total nitric oxide), lipids profile (total cholesterol, triglycerides, high density lipoprotein-cholesterol and low density lipoprotein-cholesterol) and cytokines profile (tumour necrosis factor-a, interleukin-1\beta and interleukin-6) in septic rats than those in normal control ones. Also, considerable alterations were obtained in the oxidative and antioxidant status (hydrogen peroxide, malondialdehyde, reduced glutathione, oxidized glutathione, GSH/GSSG ratio, glutathione peroxidase, superoxide dismutase and catalase) in homogenate heart tissues of septic rats than those in normal control ones.

When septic rats group was treated with L-carnitine alone or with coenzyme Q10 or a-lipoic acid as well as their mixture for 7 or 14 days a considerable amelioration effects in all previous studied parameters were pronounced dependent on time of treatment and certain mechanisms which were discussed according to available recent researches.

Key words: Septic rats, Lipopolysaccharides, Myocardial dysfunction, L-carnitine, Coenzyme-Q10, α-lipoic acid.

Contents

Serial	Title	Page
	List of Tables	i
	List of Figures	iii
	List of Abbreviations	viii
	Introduction	1
	Aim of the work	5
	Review of literature	6
I	Sepsis	6
I-1	Definition of sepsis	6
I-2	Pathophysiology of sepsis	8
I-3	Sepsis-induced cardiac dysfunction	9
I-3-A	Myocardial injury markers in sepsis	12
I-3-A-i	creatine kinase (CK) activity	12
I-3-A-ii	Lactate dehydrogenase (LDH) activity	13
I-3-A-iii	Aspartate aminotransferase (AST) activity	14
I-3-A-iv	Myoglobin level	15
I-3-A-v	Heart-fatty acid binding protein (H-FABP) level	16
I-3-B	Sepsis and endothelin (ET)	18
I-3-C	Sepsis and nitric oxide	19
I-3-D	Lipid metabolism in sepsis	20
I-3-E	Resistin level in sepsis	21
I-3-F	Cytokines in sepsis	22
I-3-G	Reactive oxygen species (ROS) in sepsis	24
I-3-H	Oxidative stress and antioxidants in sepsis	26

II	Lipopolysaccharides	27
II-1	Structure of lipopolysaccharides (LPS)	27
II-2	Lipopolysaccharides induced endotoxin	28
III	Antioxidants	31
III-1	L-carnitine	31
III-1-A	Physiological role of L-carnitine	32
III-1-B	L-carnitine as an antioxidant agent	32
III-1-C	L-carnitine role in fatty acids metabolism	33
III-1-D	The role of L-carnitine on cardiovascular diseases	34
III-1-E	Effects of carnitine administration during sepsis	36
III-2	Coenzyme Q10 (CoQ10)	37
III-2-A	Mechanism of coenzyme Q10 (CoQ10)	39
III-2-B	Antioxidant action of coenzyme Q10 (CoQ10)	40
III-2-C	Action of CoQ10 on endothelial function	40
III-2-D	Action of CoQ10 on nitric oxide (NO) production	41
III-2-E	Action of CoQ10 on proinflammatory cytokines	42
III-2-F	Action of CoQ10 on cardiac failure	43
III-3	Alpha lipoic acid (ALA)	44
III-3-A	Mechanism of alpha lipoic acid (ALA)	45
III-3-B	Action of ALA on cardiac failure	45
III-3-C	Effect of ALA on sepsis (LPS) induced oxidative stress in heart	46

	Material and Methods	50
I	Material	50
I-A	Experimental animals	50
I-B	Material used in induction of experimental septic rats (LPS)	50
I-C	Experimental antioxidants	51
I-C-i	L-Carnitine	51
I-C-ii	Coenzyme Q10 (Co Q10)	51
I-C-iii	α-lipoic acid (ALA)	52
I-D	Experimental design	52
II	Methods	53
II-A	Heart enzymes profile	53
II-A-1	Determination of serum creatine kinase (CK) activity	53
II-A-2	Determination of serum creatine kinase (CK-MB) activity	54
II-A-3	Determination of serum lactate dehydrogenase (LDH) activity	55
II-A-4	Determination of serum aspartate aminotransferase (AST) activity	55
II-B	Cardiac biochemical markers	56
II-B-1	Determination of serum rat heart-fatty acid binding protein (H-FABP) level	56
II-B-2	Determination of serum rat myoglobin level	57
II-B-3	Determination of serum rat endothelin-1 (ET-1) level	58
II-B-4	Determination of serum rat resistin level	58
II-B-5	Determination of serum total nitric oxide (TNO) level	59

II-C	Lipids profile	60
II-C-1	Determination of serum total cholesterol (T-Ch) level	60
II-C-2	Determination of serum triglycerides (TG) level	61
II-C-3	Determination of serum high density lipoprotein-cholesterol (HDL-Ch) level	62
II-C-4	Determination of serum low density lipoprotein-cholesterol (LDL-Ch) level	62
II-D	Cytokines profile	63
II-D-1	Determination of serum rat tumour necrosis factor-alpha (rat TNF-α) level	63
II-D-2	Determination of serum rat interleukin-1ß (rat IL-1ß) level	63
II-D-3	Determination of serum rat interleukin-6 (rat IL-6) level	64
II-E	Oxidative and antioxidant status in heart tissues	64
II-E-1	Determination of hydrogen peroxide (H ₂ O ₂) concentration	64
II-E-2	Determination of malondialdehyde (MDA) level	65
II-E-3	Determination of glutathione (GSH/GSSG) concentration	66
II-E-4	Determination of glutathione peroxidase (GPx) activity	66
II-E-5	Determination of superoxide dismutase (SOD) activity	67
II-E-6	Determination of catalase (CAT) activity	68
III	Statistical analysis	68
	Results	70
I	Induction of myocardial dysfunction in septic rats (LPS) on	71
I-A	Heart enzymes profile	71