

بسم الله الرحمن الرحيم

HOSSAM MAGHRABY

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HOSSAM MAGHRABY

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

HOSSAM MAGHRABY

GRAFTING AS MEANS FOR SALINITY ALLEVIATED ON TOMATO

By

HODA RAMADAN LOTFY

B.Sc. Agric. Sci. (Vegetable Crops), Fac. Agric., Cairo Univ., 2017

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE In

Agricultural Sciences (Vegetable Crops)

Department of Vegetable Crops
Faculty of Agriculture
Cairo University
EGYPT
2021

Formate Reviewer

Vice Dean of Graduate Studies

APPROVAL SHEET

GRAFTING AS MEANS FOR SALINITY ALLEVIATED ON TOMATO

M.Sc. Thesis
In
Agric. Sci. (Vegetable Crops)

By

HODA RAMADAN LOTFY

B.Sc. Agric. Sci. (Vegetable Crops), Fac. Agric., Cairo Univ., 2017

APPROVAL COMMITTEE

Dr. IBRAHIM MOHAMED GHONEIM	
Professor of Vegetable Crops, Fac. Agric., Alexandria University	
Dr. SAID ABDALLA SHEHATA	
Professor of Vegetable Crops, Fac. Agric., Cairo University	
Dr. EMAD ABDELHAMEED ABDEL DAYEM	
Associate professor of Vegetable Crops, Fac. Agric., Cairo University	
Dr. MOHAMED MOHAMEDZAKI ELMOGY	
Professor of Vegetable Crops. Fac. Agric., Cairo University	

Date: 24/5 /2021

SUPERVISION SHEET

GRAFTING AS MEANS FOR SALINITY ALLEVIATED ON TOMATO

M.Sc. Thesis
In
Agric. Sci. (Vegetable Crops)

By

HODA RAMADAN LOTFY

B.Sc. Agric. Sci. (Vegetable Crops), Fac. Agric., Cairo Univ., 2017

SUPERVISION COMMITTEE

Dr. MOHAMED MOHAMED ELMOGY Professor of Vegetable Crops, Fac. Agric., Cairo University

Dr. EMAD ABDELHAMEED
Associate Professor of Vegetable Crops, Fac. Agric., Cairo University

Dr. MOHAMED ATTIA OMAR
Head Researcher, Agriculture Research Center, Genetic Engineering
Center

Name of Candidate: Hoda Ramadan Lotfy Degree: M.Sc.

Title of Thesis: Grafting as Means for Salinity Alleviated on Tomato

Supervisors Dr. Mohamed Mohamed Elmogy

Dr. Emad Abdelhameed Dr. Mohamed Attia Omar

Department: Vegetable Crops **Date:** 24/5 /2021

ABSTRACT

This study aims to determine the efficiency of grafting to improve growth and production of tomato (Solanum lycopersicum.) under salinity stress condition. A commercial tomato hybrid (cv. Bark) and eight wild tomato accessions were evaluated at molecular, physiological and agronomic levels. At the molecular level, two powerful genetargeting marker systems (Conserved DNA-Derived Polymorphism; CDDP and Start Codon Targeted Polymorphism; SCoT) were employed. Besides, Bark cv. was grafted as a scion onto the roots of the four tomato genotypes as stocks. The rootstocks effect was evaluated by growing plants at two NaCl concentrations plus the control (0, 100, and 200 mM NaCl). Plant vegetative growth, fruit yield, fruit quality, and minerals content in leaves were determined. In addition, several antioxidants, hormones, and proline were evaluated to better understand of the physiological changes induced by salinity and grafting. Our results showed that grafting enhanced plant shoots and roots growth (plant height, number of branches, plant fresh weight, root length, and root fresh and dry weight), fruit yield (total yield, number and weight of fruits), fruit quality (Vitamin C, firmness, and total soluble solids) in Bark on most tested rootstocks. In conclusion, our consistent results from the three approaches (molecular, physiological and agronomical) revealed that the five genotypes (LA1995, LA2711, LA2485, LA3845, and Bark) were found to be grouped and exhibit better performance under salinity stress conditions. Furthermore, grafting could be a low-cost alternative method to improve salt tolerance in tomato sensitive genotypes.

Keywords: *Solanum lycopersicum*, plant hormones, NaCl, bioactive compounds.

ACKNOWLEDGEMENT

In the name of Allah most gracious, most mercifulIt, is nice for a person to set a goal in his life, and it is more beautiful for this goal to bear fruit, an ambition equal to an ambition.

Therefore, my professors **Dr. MOHAMED MOHAMED ELMOGY**, Professor of Vegetable Crops, Faculty of Agriculture, Cairo University

Dr. EMAD ABDELHAMEED, Assistant Professor of Vegetable Crops, Fac. Agric., Cairo University

and Dr. MOHAMED ATTIA OMAR, Agriculture Research Center, Genetic Engineering Center deserve to be evacuated all the expressions of thanks and praise For their great guidance and push me in the right direction My best efforts were to help me complete this useful work and get the best results.

I hope that my dear colleagues will benefit from this work.

In the end, I would like to thank my parents for their constant support and encouragement.

God grants success

LIST OF ABBREVIATIONS

Conserved DNA-Derived Polymorphism	(CDDP)
Start Codon Targeted Polymorphism	(SCoT)
Inter-simple sequence repeats	(ISSR)
Random amplified polymorphic DNA	(RAPD)
Ascorbate peroxidase	(APX)
Peroxidase	(POD)
Dehydro ascorbate reductase	(DHAR)
Principal component analysis	(PCA)
Ascorbic acid	(AA)
Total soluble solids	(TSS)
Gibberellic acid	(GA_3)
Super face drip irrigation	(SDI)
Glutathione peroxidase	(GPX)
Monodehydroascorbate reductase	(MDHAR)
Catalase enzyme	(CAT)
Unweighted pair group technique of the a	arithmetic
averages	(UPGMA)
Interactive tree of life	(iTOL)
Millimolar	(mM)

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	6
1.Grafting technique	6
2.Plant growth and yiled	8
3. Chlorophyll a and b and ascorbic Acid	9
4. Total soluble solids content and firmness	9
5. Proline content, gibberellic acid and abscisic acid content	10
6. Minerals	11
7. Antioxidant enzymes and hormons	12
MATERIALS AND METHODS	15
1. Plant material	15
2. Molecular Analysis	15
a. Extraction of Plant DNA	15
b. Analysis of CDDP	16
c. Analysis of SCoT Polymorphism	16
d. Data analysis	17
3. Greenhouse experiment	17
a. Growth conditions	17
b. Salinity treatments	18
c. Plant growth and yield	18
d. Determination of chlorophyll a and b and ascorbic Acid	19
e. Determination of total soluble solids content and firmness	19
f. Determination of minerals	20
g. Leaf 's proline, gibberellic acid and abscisic acid	
ntent	20
h. Antioxidant enzymes and hormons	21
4. Statistical analysis	22
ESULTS AND DISCUSSION	23
1-Analysis of CDDP and ScoT	23
2- Analysis of Molecular Phylogeny	28
3- Plant growth	33

4- Yield and its compounds	37
5- Quality of tomato fruits	42
6- Minerals content in tomato shoots	46
7- Antioxidant enzymes and hormons in tomato shoots	52
8- Proline content	53
SUMMARY	61
CONCLUSION	65
REFERENCES	66
ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1.	Conserved DNA sequence targets and primer sequences and details	24
2.	Primer code and primer sequences of the SCoT primers	25
3.	Primer code, number of total bands, polymorphic bands, and percentage of polymorphism in the CDDP and SCoT primers	26
4.	Jaccard's similarity matrix based on the CDDP analysis of the nine tomato cultivars	27
5.	Jaccard's similarity matrix based on the SCoT analysis of the nine tomato cultivars	32
6.	Jaccard's similarity matrix based on the combined analysis (CDDP + SCoT) of the nine tomato cultivars	32
7.	Analysis of variance (mean square) of tomato growth attributes	35
8.	Fresh weight attribute as affected by Salinity× Rootstock interaction	35
9.	Analysis of variance (mean square) of tomato root attributes	35
10.	Effect of salinity treatments, rootstocks, and their interactions on yield and its Compounds	39
11.	Effect of salinity treatments, rootstocks, and their interactions on fruits quality	44

12.	Effect of salinity treatments, rootstocks, and their interactions on the minerals of the tomato shoots	48
13.	Effect of salinity treatments, rootstocks, and their interactions on the minerals of the tomato shoots	49
14.	Effect of salinity treatments, rootstocks, and their interactions on hormones of tomato shoots	55

LIST OF FIGURES

No.	Title	Page
1.	UPGMA cluster analysis based on Jaccard's similarity coefficient of the combined analysis (A ; CDDP and SCoT), CDDP analysis (B) and SCoT analysis (C) of the nine tomato genotypes. Principal Component Analysis (PCA) of the combined analysis (D ; CDDP and SCoT), CDDP analysis (E) and SCoT analysis (F) of the nine tomato genotypes showing the two-dimensional (PC1 and PC2) plot	31
2.	Effect of salt treatments and rootstocks on (A) plant height, (B) number of branches, (C) SPAD reading, and (D) plant dry weight. Different letters indicate significant differences between treatments (Tukey test at $p < 0.05$)	36
3.	Effect of salt treatments and rootstocks on (A) root length, (B) root fresh weight, and (C) root dry weight. Different letters indicate significant differences between treatments (Tukey test at $p < 0.05$)	40
4.	Effect of salinity levels \times rootstocks interaction on (A) number of fruits, (B) mean fruit weight (g), and (C) total yield per plant (g). Vertical bars represent standard errors of means ($n = 3$); in each bar, values followed by different letters differ significantly at $P = 0.05$ according to Tukey test	
5.	Effect of salinity levels \times rootstocks interaction on (A) Vit. C, (B) TSS, and (C) firmness. Vertical bars represent standard errors of means ($n = 3$); in each bar, values followed by different letters differ significantly at $P = 0.05$ according to Tukey test	

- 6. Effect of salinity levels \times rootstocks interaction on (A) N, (B) P, (C) K, and (D) Ca. Vertical bars represent standard errors of means (n = 3); in each bar, values followed by different letters differ significantly at P = 0.05 according to Tukey test.
 - (50-51)
- 8. Effect of salinity levels \times rootstocks interaction on (A) GA3, (B) ABA, (C) APX, (D) POD, (E) DHAR, and (F) proline. Vertical bars represent standard errors of means (n = 3); in each bar, values followed by different letters differ significantly at P = 0.05 according to Tukey test..... (56-57-58)