

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Cairo University Faculty of Veterinary Medicine Department of Virology

Rapid methods for detection of Equine Herpes Virus 1 in Arabian Horses in Egypt

Thesis Presented By

Ahmed Mohammed Ahdy Attia

(B.V.Sc., Mansoura University, 2005) (M.V.Sc., Mansoura University, 2010)

For The Degree of Master in Veterinary Medical Science (Virology)

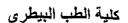
Under supervision of

Prof. Dr. Ahmed Abd El-Ghani El-Sanousi

Professor of Virology
Faculty of Veterinary Medicine
Cairo University

Prof. Dr. Mohamed Abd El-Hameed Shalaby

Professor of Virology Faculty of Veterinary Medicine Cairo University


Prof. Dr. Ibrahim Mohamed Farag Diab

Researcher professor of Cell Biology National Research Center

قسم الفيروسات

Approval Sheet

This is to approve that Thesis presented by

Ahmed Mohammed Ahdy attia

For the degree of MV.Sc. (Virology) has been approved by the examining committee

Prof. Dr. Samy abd ElSalam Khalil

Professor of Microbiology and Dean of faculty of veterinary medicine alex University

S.A. Khaw

Prof. Dr-Haitham Mohamed Mahmoud Amer

Professor and Head of Department of Virology Faculty of Veterinary Medicine

Cairo University.

Prof. Dr- Ibrahim Mohamed Farag Diab

Researcher Professor of Cell Biology National Research Center (Supervisor) Thrahm

Prof. Dr- Mohamed Abd El-Hamid Shalaby And 451

Professor of Virology Faculty of Veterinary Medicine Cairo University (Supervisor). Shalaby

Prof. Dr-Ahmed Abd El-ghani El-Sanousi

Professor of Virology Faculty of Veterinary Medicine Cairo University (Supervisor). Ahmel Sleet

2021

الرمز البريدى: 12211 فاكس: 35725240 العنوان: كلية الطب البيطرى- الجيزة- مصر تليفون: 3571309- 3571305

Cairo University Faculty of Veterinary Medicine Department of Virology

Supervision Sheet

Prof. Dr. Ahmed Abd El-Ghani El-Sanousi Professor of Virology Faculty of Veterinary Medicine Cairo University

Prof. Dr. Mohamed Abd El-Hameed Shalaby
Professor of Virology
Faculty of Veterinary Medicine
Cairo University

Prof. Dr. Ibrahim Mohamed Farag Diab Researcher professor of Cell Biology National Research Center

Cairo University
Faculty of Veterinary Medicine
Department of Virology

Name: Ahmed Mohammed Ahdy Attia

Title of thesis:" Rapid methods for detection of Equine Herpes Virus

type one in Arabian Horses in Egypt"

Scientific degree: Master's Degree(M.V.Sc.)

Supervisors:

Prof. Dr. Ahmed Abd El-Ghani El- Sanousi Professor of Virology

Faculty of Veterinary Medicine

Cairo University

Prof. Dr. Mohamed Abd El-Hameed Shalaby Professor of Virology

Faculty of Veterinary Medicine

Cairo University

Prof. Dr. Ibrahim Mohamed Farag Diab Researcher professor of Cell Biology

National Research Center

Abstract

Equid Herpesvirus 1 (EHV-1) is the most important virus causing pathological disorders in horses. It causes recurrent outbreaks of abortion and neurological disorders with high mortality in Arabian horses in Egypt. As EHV1 is a very contagious disease, rapid and accurate diagnosis is important to broaden our understanding of EHV-1 in the field and implement proper preventive and control measures. Samples were collected from sixty six clinical cases over a period from 2016 to 2019. All samples originated from Arabian horse studs with respiratory, abortigenic and neurological outbreaks in Cairo and Giza governorates. EHV1 was diagnosed preliminarily in these clinical cases by immunohistochemistry using monoclonal antibody against EHV1 glycoprotein B and then by molecular detection using real time PCR which diagnosed EHVlinfection in twenty five samples within short time in less than three hours including DNA preparation. Molecular characterization of glycoprotein B (gB, ORF33) gene was applied for confirmation. Molecular characterization revealed that genetically identical EHV-1 strains were still circulating in Egypt. These strains were closely related to the European EHV-1 strains. Furthermore, EHV-1 sequences from this study showed little or no differences for the amino acid's sequences compared to previously published sequences. This study would be valuable for monitoring of EHV-1 infection in Egypt and determining the gB gene sequence of newly identified EHV-1 field strains which is the most conserved region in the viral DNA and frequently used as a target for diagnostic PCR protocols for the future outbreaks.

Keywords: qPCR, EHV-1, glycoprotein B gene (gB, ORF 33), Immunohistochemistry, Abortion, Arabian horses, Egypt.

Dedication

Dedicated to my Family

... Father

...Mother

 \dots Wife

....My Brothers and

Sisters

Acknowledgments

All thanks to our merciful God ALLAH who gave me all the graces I enjoy in my life . His magnificent help and compassion gave me the ability and patience to finish this work.

I would like to express my gratitude towards **Prof.Dr. Ahmed Abd El-Ghani El-Sanousi,** professor of virology department, faculty of veterinary medicine Cairo university, for the great support, objective criticism and precious supervision all through the work. Also for this sincere guidance with encouragement during his direct supervision throughout the work.

I wish to express my gratefulness and thanks to **Prof.Dr. Mohamed Abd El—Hameed Shalaby**, professor of virology department, faculty of veterinary medicine Cairo university for, his valuable advices encouragement and support during the whole study.

I wish to express my whole gratefulness and special thanks to prof. Dr, I brahim Farag. for endless help.

Also I would like to express my deepest respect and sincere gratitude to **Prof. Dr. Haitham Mohamed Amer,** chairman of virology department, faculty of veterinary medicine Cairo university

Grateful thanks and sincere gratitude are extended to the Virology Lab members; **Dr Bassem Ahmed and Dr.Mahmoud El Gamal** for their great efforts and technical support during the whole study and lab work.

I would also like to thank prof.DR. Eman Mahfouz and prof.Dr. Hassan Darwish for continuous support and help.

Great thanks should be a admitted to **prof. Dr Ahmed Abd El Wahed**, University of Leipzig and **prof. Dr Walid el Azab**, Freie Berlin university, for their continuous follow up as well as supplying me with very important reagents and biological materials that helped me in conduction of work.

I would also like to thank all my colleagues and all chairmans of National research center and Egyptian agriculture organization for their help.

Lastly my cardinal thanks to my beloved Family and faithful friends for their kind patience, sacrifice and acceptance of the long hours I spent in performing this work.

Contents

Title	
List of tables	
List of Figures	
List of abbreviations	
CHAPTER (1)INTRODUCTION	1
CHAPTER (2)REVIEW OF LITERATURE	5
2.1.Historical background	
2.2. EHV in Egypt	
2.3.Classification of Equine Herpesviruses	10
2.4.Classification of Equine Herpesvirus	15
according to the clinical signs	
2.5. Equine herpes virus General characteristics	17
2.5.1. Virion Structure	17
2.5.2. Genome Structure	19
2.5.3 .Viral glycoproteins	22
2.5.4. Herpesvirus replication, transcription and translation	25
2.5.5. Latency of Herpes Virus	29
2.5.6. Virulence factor	31
2.6. Pathogenesis	
2.7. Immune evasion strategies of EHV-1	38
2.8. Epidemiology and transmission of EHV-1	42
2.9.Clinical signs of EHV-1	44
2.10.Diagnosis	48
2.10.1.Sampling	49
2.10.2. Virus isolation	51
2.10.3.Serodiagnosis	54
2.10.4.Molecular diagnostic techniques	58
2.10.5.Histopathology and Immunohistochemistry	66

Title	Page
2.11.Vaccine	68
CHAPTER (3)PUBLISHED ARTICLE	73
CHAPTER (4)DISCUSSION	95
CHAPTER (5) CONCLUSION AND	99
RECOMMENDATIONS	
CHAPTER (6) ENGLISH SUMMARY	100
CHAPTER (7) REFERENCES	102
APPENDIX	141
ARABIC SUMMARY	

List of Tables

Table	Title	Page	
Review			
1	Classfication of Herpesviridae according to ICTV.	11	
2	Details of commercially available inactivated and live EHV vaccines in Egypt and world.	72	
Article			
1	Different Types of Samples Collected for Virological examination.	77	
2	EHV1 ORF 33 primers and probe used in this study	79	
3	Stud population, vaccination history, tested samples number and prevalence of EHV-1 positive samples.	79	
4	The nucleotide variation of ORF33 among isolated strains comparing to reference strain Ab4.	84	
5	Clinical cases of EHV1 infection with real time PCR CT.	85	
Appendix			
6	Sequence identity matrix of EHV-1 positive samples using Bio-Edit 7.2.6 program.	142	

List of Figures

Figure	Title	Page		
	Review			
1	Phylogenetic analysis of gB and DPOL of EHV-1.	12		
2	Phylogeny of equid herpesviruses.	13		
3	Electronmicroscopic photomicrograph (left) and schematic drawing (right) of an EHV1 virion	19		
4	The EHV-1 genome structure	19		
5	The Replication cycle of Herpesvirus	25		
6	EHV-1 pathogenesis	33		
7	Mechanisms of EHV-1 cell to cell spread	37		
8	Viral spread via cell to cell contact (from infected PBMC to endothelial cells	41		
	Article			
1	Gross lesions of last trimester aborted fetus	81		
2	Histopathological lesions of EHV-1 infected horses	82		
3	real time PCR results	83		
4	Deduced amino acids sequence alignment of EHV-1 study sequences in comparison with published sequences from GenBank and other Egyptian isolates.	84		
Appendix				
5	Ethidium bromide stained 1.5% agarose gel revealed bands of PCR products at expected size (770b).	141		

List of Abbreviation

A	Adenine
AA	Amino Acid
ADCC	Antibody-Dependent Cellular Cytotoxicity
AGID	Agar Gel Immunodiffusion
AHV-1	Asenine Herpes Virus Type 1
AHV-2	Asenine Herpes Virus Type 2
AHV-3	Asenine Herpes Virus Type 3
APC	Antigen Presenting Cells
APHIS-USDA	Animal And Plant Health Inspection Service- U.S.
	DEPARTMENT OF AGRICULTURE
BAC	Bacterial Artificial Chromosome
ВНК	Baby Hamster Kidney
BMC	Blood Mononuclear Cells
BoHV	Bovine Herpesvirus
bp	Base Pair
С	Cytosine
CAM	Chorioallontoic Membrane
CD	Cluster Of Differentiation
CF	Complement Fixation
CMI	Cell Mediated Immunity
CNS	Central Nervous System
CSF	Cerebrospinal Fluid
CPE	Cytopathic Effect
CSPG	Chondroitin Sulfate Proteoglycans
Ct	Cycle Threshold
CTL	Cytotoxic T Cells
CTLp	Cytotoxic T Cells Precursor
D	Aspartic Acid
DNA	Deoxyribonucleic Acid
DNase	Deoxy Ribonuclease Enzyme
dpi	Day Post Infection
DPOL	DNA Polymerase
dsDNA	Double-Stranded DNA
E Derm	Equine Derm Cells
EAV	Equine Abortion Virus

EBV	Epstein Barr Virus
EC	Endothelial Cells
ECE	Embryonated Chicken Egg
ECM	Extracellular Matrix
EDTA	Ethylene Diamine Tetra Acetic Acid
EEK	Equine Embryonic Kidney
EEL	Equine Embryonic Lung
EFKI	Equine Fetal Kidney Cells
EHM	Equine Herpes Myeloencephlopathy
EHV	Equine Herpes Viruse
EHV-1	Equine Herpes Virus Type 1
EHV-2	Equine Herpes Virus Type 2
EHV-3	Equine Herpes Virus Type 3
EHV-4	Equine Herpes Virus Type 4
EHV-5	Equine Herpes Virus Type 5
EHV-8	Equine Herpes Virus Type 8
EHV-9	Equine Herpes Virus Type 9
ELISA	Enzyme Linked Immunosorbent Assay
EM	Electron Microscope
EMPF	Equine Multinodular Pulmonary
ERV	Equine Rhinopneumonitis Virus
EVA	Equine Viral Arteritis
E%	Amplification Efficiency
FA	Fluorescent Antibody
FAT	Fluorescent Antibody Technique
FAM	6-Carboxyfluorescein
FC	Fragment Crystallizable Region
fg	Femto Gram
G	Guanine
g	G Force
gB	Glycoprotein B
gC	Glycoprotein C
gD	Glycoprotein D
gE	Glycoprotein E
gG	Glycoprotein G
gH	Glycoprotein H
GHV-1	Gazelle Herpes Virus Type 1