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Abstract

Motor imagery represents one Brain-Computer Interface (BCI)
paradigm that has been utilized in developing applications to assist subjects
with motor disability. Such paradigm relies on analyzing brain
electroencephalography (EEG) activity to identify the intended movement
direction. Existing motor imagery feature extraction techniques are focused on
utilizing traditional signal processing and machine learning techniques.
Recent advances in the deep learning field has inspired the development of
few methods for motor imagery classification that achieved further
performance improvement. This thesis introduces a deep neural network
approach for motor imagery classification using Long Short-Term Memory
(LSTM) combined with Autoencoders based on a sequence-to-sequence
architecture. The proposed network extracts features from the frequency-
domain representation of EEG signals. This network is trained to obtain low-
dimensional representation of EEG features that are then fed into a multi-layer
perceptron of 3 layers for classification. Systematic and extensive
examinations have been carried out by applying the approach to public
benchmark EEG datasets. The obtained results outperform classical state—of-
the-art methods employing standard frequency-domain features and common
spatial patterns, and comparative results to methods such as filter bank
common spatial pattern and its variants. Our results indicate the efficacy of
the proposed LSTM autoencoder approach in EEG motor imagery

classification.

Keywords: Motor imagery, deep learning, long short-term memory, brain
computer interface, EEG



Summary

A Brain-Computer Interface (BCI) system aims at processing brain
signals to recognize human intention that is subsequently used to control an
external device. BCI systems are based on monitoring and analyzing
electroencephalography (EEG) brain activity. EEG activity is a non-invasive
signal that can be include different patterns such as P300 evoked potentials,
steady-state visual evoked potentials (SSVEP) and motor imagery (MI)
rhythms. MI signals are evoked during the imagination of movement without
performing the actual action. In this thesis, a deep learning approach based on
Long-Short-Term-Memory and Autoencoder has been developed and
introduced to solve Motor imagery classification problem competing with

state-of-the-art methods.

The chapters of this thesis are divided into 5 chapters, which are as

follows:

Chapter 1 provides an introduction to the thesis outlining the research scope,

objectives and contributions.

Chapter 2 gives a literature review of brain computer interface,

electroencephalography, motor imagery and machine learning.

Chapter 3 introduces the proposed approach along with a detailed description

of the methods developed and the training process.

Chapter 4 demonstrates the achieved results and comparisons of our

experiments and proposed approach to other approaches.

Chapter 5 gives the conclusions and future work.

Vi
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