

بسم الله الرحمن الرحيم

HOSSAM MAGHRABY

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HOSSAM MAGHRABY

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

HOSSAM MAGHRABY

FACULTY OF ENGINEERING

Computer and Systems Engineering

Deep Learning Approaches for Motor Imagery Brain-Computer Interfaces

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science in Electrical Engineering

(Computer and Systems Engineering)

by

Raghda Hassan Mohamed

Bachelor of Science in Electrical Engineering

(Computer and Systems Engineering)

Faculty of Engineering, Ain Shams University, 2014

Supervised By

Prof. Hazem Mahmoud Abbas Professor Computer and Systems Engineering Department Faculty of Engineering, Ain Shams University

Associate Professor Computer and Systems Engineering Department Faculty of Engineering, Ain Shams University

Cairo - (2021)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Computer and Systems Engineering

Deep Learning Approaches for Motor Imagery Brain-Computer Interfaces

by

Raghda Hassan Mohamed

Bachelor of Science in Electrical Engineering (Computer and Systems Engineering) Faculty of Engineering, Ain Shams University, 2014

Examiners' Committee

Name and Affiliation	Signature
Prof. Omar H. Karam Faculty of Informatics and Computer Science The British University in Egypt	
Prof. Mahmoud I. Khalil Computer and Systems Engineering Dept. Faculty of Engineering, Ain Shams University	
Prof. Hazem Mahmoud Abbas Computer and Systems Engineering Dept. Faculty of Engineering, Ain Shams University	
Dr. Seif Eldin M. Eldawlatly Computer and Systems Engineering Dept. Faculty of Engineering, Ain Shams University	

Date: 25 May 2021

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Electrical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

	Student name
	Signature
••••	
Dat	e: 25 May 2021

Researcher Data

Name : Raghda Hassan Mohamed Mohamed

Date of birth : 04/01/1992

Place of birth : Cairo, Egypt

Last academic degree : Bachelor of Science

Field of specialization : Computer Engineering and Systems

University issued the degree : Ain Shams University

Date of issued degree : 2014

Current job : Senior Software Engineer

Abstract

Motor imagery represents one Brain-Computer Interface (BCI) paradigm that has been utilized in developing applications to assist subjects with motor disability. Such paradigm relies on analyzing brain electroencephalography (EEG) activity to identify the intended movement direction. Existing motor imagery feature extraction techniques are focused on utilizing traditional signal processing and machine learning techniques. Recent advances in the deep learning field has inspired the development of few methods for motor imagery classification that achieved further performance improvement. This thesis introduces a deep neural network approach for motor imagery classification using Long Short-Term Memory (LSTM) combined with Autoencoders based on a sequence-to-sequence architecture. The proposed network extracts features from the frequencydomain representation of EEG signals. This network is trained to obtain lowdimensional representation of EEG features that are then fed into a multi-layer perceptron of 3 layers for classification. Systematic and extensive examinations have been carried out by applying the approach to public benchmark EEG datasets. The obtained results outperform classical state-ofthe-art methods employing standard frequency-domain features and common spatial patterns, and comparative results to methods such as filter bank common spatial pattern and its variants. Our results indicate the efficacy of the proposed LSTM autoencoder approach in EEG motor imagery classification.

Keywords: Motor imagery, deep learning, long short-term memory, brain computer interface, EEG

Summary

A Brain-Computer Interface (BCI) system aims at processing brain signals to recognize human intention that is subsequently used to control an external device. BCI systems are based on monitoring and analyzing electroencephalography (EEG) brain activity. EEG activity is a non-invasive signal that can be include different patterns such as P300 evoked potentials, steady-state visual evoked potentials (SSVEP) and motor imagery (MI) rhythms. MI signals are evoked during the imagination of movement without performing the actual action. In this thesis, a deep learning approach based on Long-Short-Term-Memory and Autoencoder has been developed and introduced to solve Motor imagery classification problem competing with state-of-the-art methods.

The chapters of this thesis are divided into 5 chapters, which are as follows:

Chapter 1 provides an introduction to the thesis outlining the research scope, objectives and contributions.

Chapter 2 gives a literature review of brain computer interface, electroencephalography, motor imagery and machine learning.

Chapter 3 introduces the proposed approach along with a detailed description of the methods developed and the training process.

Chapter 4 demonstrates the achieved results and comparisons of our experiments and proposed approach to other approaches.

Chapter 5 gives the conclusions and future work.

Acknowledgment

I wish to express my sincere appreciation to my supervisors, Prof. Hazem Mahmoud Abbas and Dr. Seif Eldin M. Eldawlatly and would like to express deep gratitude to Dr. Seif Eldin M. Eldawlatly for his guidance, encouragement and gracious support to be professional and do the right thing. Without his persistent help, the goal of this thesis would not have been realized.

I wish to express my gratitude to my parents, sisters and friends for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them.

Table of Contents

1	CHA	APTER 1 Introduction1	
	1.1	Research Scope	2
	1.2	Research Objectives	2
	1.3	Research Contributions	3
	1.4	Thesis Outline	3
2	CHA	APTER 2 Background5	
	2.1	Introduction	5
	2.2	Brain Structure	6
	2.2.1	Cerebrum	6
	2.2.2	The Cerebrum lobes	8
	2.3	Brain-Computer Interface (BCI)	11
	2.4	Neural Interfaces	11
	2.4.1	Invasive Methods	11
	2.4.2	Non-Invasive Methods	11
	2.5	Mental Strategies and Brain Patterns.	12
	2.5.1	Selective attention	13
	2.5.2	P300	13
	2.5.3	SSVEP	13
	2.5.4	Motor Imagery	14
	2.6	Signal Processing	18
	2.6.1	Noise Removal: Common Average Rejection (CAR)	18
	2.6.2	Filtering	19
	2.6.3	Fast Fourier Transform	22
	2.7	Preprocessing methods	23
	2.7.1	Data Augmentation	23
	2.7.2	Data Normalization	26
	2.8	Machine Learning	28
	2.8.1	Supervised Learning	28

	2.8.	2 Unsupervised Learning	.29
	2.8.	3 Reinforcement learning	.29
	2.9	Artificial Neural Networks (ANNs)	.29
	2.9.	1 Fully Connected Neural Networks (FCNN)	.30
	2.9.	2 Convolutional Neural Networks (CNNs)	.31
	2.9.	3 Recurrent Neural Networks (RNNs)	.33
	2.9.	4 Long Short-Term Memory (LSTM)	.34
	2.9.	5 Auto-Encoders Networks (AENs)	.36
	2.9.	6 Deep Belief Network (DBN)	.38
	2.10	Related Work	.40
	2.10	O.1 Chin, Gan and Coyle	.40
	2.10	0.2 Denoising Autoencoder (DAE)	.42
	2.10	0.3 Bispectrum-based feature extraction technique for BCI	.43
	2.10 Spa	0.4 Convolutional Neural Networks based on augmented Common tial Filter (CSP)	.44
	2.10	0.5 Filter-Bank Common Spatial Filter (FBCSP)	.45
	2.10	0.6 Frequential Deep Belief Network (FDBN)	.46
3	CH	APTER 3 The Proposed Deep Learning Approach48	
	3.1	Proposed Approach Overview	.48
	3.2	Datasets	.48
	3.3	Processing Sequence	.51
	3.4	Feature Selection	.51
	3.5	Sequence-to-Sequence Architecture	.53
	3.6	LSTM Autoencoder (LSTM-AE)	.54
	3.7	Training	.56
	3.8	Optimizers	.58
	3.8.	1 Adam	.58
	3.8.	2 Adamax	.58
	3.8.	3 AMSGrad	.59
4	СН	APTER 4 Comparisons and Results60	

	4.1 Per	formance of the LSTM-AE Approach	61
	4.1.1	Performance of the LSTM-AE model	61
	4.1.2	Results of Data Normalization Methods	63
	4.1.3	Results of Data Augmentation Methods	64
	4.1.4	Results of Different Activation Functions	64
	4.1.5	Results of Different Optimizers	65
	4.1.6	Results of Different Number of Layers	66
	4.1.7	Results of Different Number of Nodes	68
	4.1.8 Ratios	Performance of the LSTM-AE Approach for Different Dropout 69	-
	4.2 Co	mparison of LSTM-AE with State-of-the-art Methods	71
	4.2.1	Across Subjects Performance of LSTM-AE	74
5	СНАРТ	TER 5 Conclusions and Future Work77	
	5.1 Con	nclusions	77
	5.2 Fut	ure Work	78
Re	eferences	80	

List of Figures

Figure 2-1 Brain Structure showing 4 major areas: Cerebrum, Cerebellum,	
Diencephalon and Brain Stem. Adapted from [6]	6
Figure 2-2 Left and Right brain functions show the brain lateralization of two bra	in
hemispheres. Adapted from [8].	
Figure 2-3 Cerebrum lobes. Adapted from [11]: a. Blue: the frontal lobe b.	
Yellow: the partial lobes c. Green: The temporal lobes d. Red: the occipital lobes	9
Figure 2-4 Motor and sensory regions of cerebral cortex. Adapted from [9]	
Figure 2-5 Brain Homunculus. Adapted from [10]	.10
Figure 2-6 Different recording methods used to control BMIs. Invasive methods	
include: ECoG electrodes placed on the dura, SEEG electrodes placed through th	e
skull into the cortex and intracortical electrodes implanted in the cortex. Non-	
invasive methods include: EEG electrodes placed on the scalp and MEG squids	
placed around the head. Adapted from [14]	.12
Figure 2-7 EEG Headset electrodes mapping	.15
Figure 2-8 Temporal evolution of (A) movement-related potentials (MRCP), (8)	
ERD and ERS of beta rhythm, (C) ERD of mu rhythm and (D) rectified EMG for	•
one subject (electrode position C3, right thumb movement). Time is expressed on	1
the horizontal axis from 2 s before to 2 s after movement offset. Adapted from.	
Adapted from [20].	.16
Figure 2-9 Time course of ERD/ERS. For each movement (right hand, left hand of	or
both feet movement), the EEG power of C3, Cz and C4 within 8-12 Hz frequency	У
band:(a) shows the ERD/ERS patterns happening in the right hand movement; (b)
shows the ERD/ERS patterns happening in the left hand movement; and (c) show	/S
the ERD/ERS patterns happening in both feet movement. Adapted from [19]	.17
Figure 2-10 Common Average Rejection (CAR)	.19
Figure 2-11 Filter types (a) Low-pass, (b) High-pass, (c) Band-pass, (d) Band-sto	p
(notch)	.20
Figure 2-12 Filter order effect	.21
Figure 2-13 IIR Filter	.22
Figure 2-14 Time series shifting effect	.24
Figure 2-15 Time series rotation effect, (a) Raw data, (b) Rotated data	.25
Figure 2-16 Time series noising effect	.26
Figure 2-17 Fully Connected Neural Network structure	.30
Figure 2-18 Example of Convolutional Neural Network with input image. Adapte	ed
from [43]	.31
Figure 2-19 ReLU, Sigmoid and Tanh activation function graphs	.33
Figure 2-20 LSTM cell structure. Adapted from [47]	.35
Figure 2-21 Auto-Encoders Network structure	.37

Figure 2-22 Restricted Boltzmann Machines (RBM)	.39
Figure 2-23 DAE for incomplete EEG signals on spectral power features to classi	ify
EEG signals structure	.43
Figure 2-24 Convolutional Neural Networks (CNNs) based on augmented Comm	ıon
Spatial Filter (CSP) structure	.45
Figure 2-25 Filter-Bank Common Spatial Filter (FBCSP) sequence of processing	46
Figure 2-26 Frequential Deep Belief Network sequence of processing	.47
Figure 3-1 LSTM autoencoder scheme for motor imagery classification	.48
Figure 3-2 competition IV dataset 2b recording sessions description (a) Screening	3,
(b) Smiley feedback	.50
Figure 3-3 Motor imagery electrodes position on the scalp	.50
Figure 3-4 Sequence of data pre-processing	.51
Figure 3-5. Proposed LSTM autoencoder approach for motor imagery classificat	ion
with 3 LSTM autoencoder layers followed by three fully connected layers. Layers	S
1, 2 and 3 in the figure correspond to the hidden layers of the trained autoencoder	rs
	.56
Figure 3-6 EEG trial structure in seconds	.57
Figure 3-7 Structure of Encoder-Decoder part of our approach	.58
Figure 4-1 EEG time-domain signals recorded on channels 3 and 4 for (a) left and	d
(b) right motor imagery tasks	.60