

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

ASSESSMENT OF SERUM ADROPIN LEVEL AS A RISK FACTOR OF ISCHAEMIC HEART DISEASE IN TYPE 2 DIABETES MELLITUS CASES

Thesis

Submitted for partial fulfillment of Master Degree in Endocrinology and Metabolism

Presented by

Baher Emil Ibrahim

M.B. B.Ch

Supervised by

Prof. Dr. Khaled Mahmoud Makboul

Professour of Internal Medicine and Endocrinology Faculty of Medicine, Ain Shams University

Dr. Salah Hussein Elhalawany

Lecturer of Internal Medicine and Endocrinology Faculty of Medicine, Ain Shams University

Dr. Hany Khairy Mansour

Lecturer of Internal Medicine and Endocrinology Faculty of Medicine, Ain Shams University

Dr. Dina Ahmed Marwan

Lecturer of Internal Medicine and Endocrinology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2021

تقييم مستوى هرمون الادروبين كمعامل خطر لمرض نقص تروية القلب في حالات مرضى السكري من النوع الثاني

رسالة

توطئة للحصول على درجة الماجستير في الغدد الصماء والايض مقدمة من

الطبيب/ باهر إميل إبراهيم بكالوريوس الطب و الجراحة

تحت إشراف

أ.د/ خالد محمود مقبول

أستاذ امراض الباطنه والغدد الصماء كلية الطب- جامعة عين شمس

د/ صلاح حسين الحلواني

مدرس امراض الباطنه والغدد الصماء كلية الطب- جامعة عين شمس

د/ هانی خیری منصور

مدرس امراض الباطنه والغدد الصماء كلية الطب- جامعة عين شمس

د/ دینا احمد مروان

مدرس امراض الباطنه والغدد الصماء كلية الطب- جامعة عين شمس كلية الطب

جامعة عين شمس

سورة البقرة الآية: ٣٢

First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof. Dr. Khaled Mahmoud Makboul**, Professour Internal Medicine and Endocrinology, Ain Shams University, for his close supervision, valuable instructions, continuous help, patience, advices and guidance. He has generously devoted much of his time and effort for planning and supervision of this study. It was a great honor to me to work under his direct supervision.

I wish to express my great thanks and gratitude **Dr**. **Salah Hussein Elhalawany**, Lecturer of Internal Medicine and Endocrinology, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to **Dr**. **Hany Khairy Mansour**, Lecturer of Internal Medicine and Endocrinology, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to **Dr**. **Dina Ahmed Marwan**, Lecturer of Internal Medicine and Endocrinology, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family, my colleagues,, for their valuable help and support.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

Contents

Title P		Page
•	List of Abbreviations	I
•	List of Table	III
•	List of Figures	5
•	Introduction	1
•	Aim of the work	3
•	Review of literature	
	Chapter (1):Diabetes Mellitus Type 2	4
	Chapter (2): Adropin Hormone	31
	Chapter (3): Relationship between Adropin ,T2DM and Ischaemic heart disease	.52
•	Patients and methods	70
•	Results	89
•	Discussion	109
•	Summary	119
•	Conclusions	122
•	Recommendations	123
•	References	124
•	الملخص العربي	158

LIST OF ABBREVIATIONS

American diabetes association **ADA** Adr-Tg Adropin-overexpressing transgenic mice **AGEs** Advanced glycation end products **AIDS** Acquired immunodeficiency syndrome AMI Acute myocardial infarction. **BMI** Body mass index Coronary artery disease **CAD** CIMT Carotid intima-media thickness CPT1B Carnitine palmitoyl transferase-1b CSX Cardiac syndrome x. CT Computed tomography Cardiovascular disease **CVD** DAG Diacylglycerol DHAP Dihydroxyacetone phosphate. Diet-induced obesity DIO Endothelial nitric oxide synthase **eNOS** ERK1/2 Extracellular signal-regulated kinases 1/2 **EPC** Endothilial progenitor cells F-1,6-P Fructose-1,6-bisphosphate F-6-P Fructose-6-phosphate Fatty acid oxidation FAO G-3-P Glycerol-3-phosphate GA3P Glyceraldehdye-3-phosphate Gestational diabetes mellitus **GDM** Glutamine: fructose-6-phosphate amidotransferase **GFAT** GIP Glucose-dependent insulinotropic polypeptide **GIPP** Gastric inhibitory polypeptide GlcNAc N-acetyl glucosamine GLP-1 Glucagon like peptide-1 G protein-coupled receptor GPR19 High density lipoprotein **HDL** HIV Human immunodeficiency virus High mobility group a1 **HMGA1** The homeostatic model assessment of insulin **HOMA-IR** resistance **IFG** Impaired fasting glucose **IGT** Impaired glucose tolerance **INSR** Insulin receptor gene

ī

IRS1, IRS2 Insulin receptor substrate 1&2,

∠List of Abbreviations

MAPK1	Mitogen-activated protein kinase 1
MESA	Multi-ethnic study of atherosclerosis
MetS	Metabolic syndrome
MGO	Methylglyoxal
NAFLD	Non alcoholic fatty liver disease
NASH	Non-alcoholic steatohepatitis
NICE	National institute for health and care excellence
NO	Nitric oxide.
OGTT	Oral glucose tolerance test
ORF	Open reading frame's
PAD	Peripheral arterial disease
PAI-1	Plasminogen activator inhibitor-1
PCOS	Polycystic ovarian syndrome,
PDH	Pyruvate dehydrogenase,
PDK4	Pyruvate dehydrogenase kinase 4.
PPAR γ	Peroxisome proliferator-activated receptor-γ
PI3K	Phosphoinoside-3 kinase
PKC	Protein kinase-c
QTL	Quantitative trait loci
ROS	Reactive oxygen species
RNS	Reactive nitrogen species
SA	Subclinical atherosclerosis
SAP	Stable angina pectoris
SNPs	Single-nucleotide polymorphisms
T2D	Type 2 diabetes
TGF-1	Transforming growth factor 1
TNF- α	Tumor necrosis factor alpha
UDP-cNAc	Uridine diphosphate n-acetyl glucosamine
UAP	Unstable angina pectoris
VEGF	Vascular endothelial growth factor
WHO	World health organization

LIST OF TABLE

Table No	Subjects	Page
Table (1):	Criteria for testing for diabetes or prediabetes in	
	asymptomatic adults	10
Table (2):	Criteria defining prediabetes	10
Table (3):	Criteria for the diagnosis of diabetes	11
Table (4):	The concentration of adropin in biological materials	34
Table (5):	Demographic data of Group 1 (Diabetics with	
	IHD)	90
Table (6):	Laboratory and radiological data of Group 1 (Diabetics with IHD):	91
Table (7):	Demographic data of Group 2 (Diabetics without	
,	IHD):	92
Table (8):	Laboratory and radiological data of Group 2	
	(Diabetics without IHD):	93
Table (9):	Demographic data of Group 3 (control group):	94
Table (10):	Laboratory and radiological data of Group 3	
	(control group):	94
Table (11):	Comparison between studied groups as regard	
	hypertension and sex	95
Table (12):	Comparison between studied groups as regard	
	age and body mass index	97
Table (13):	Comparison between studied groups as regard	
	fasting glucose and insulin and post prandial	
	glucose	99
Table (14):	Comparison between studied groups as regard	
m 11 (4.5)	laboratory parameters	102
Table (15):	Comparison between studied groups as regard	102
T 11 (16)	carotid intima media thickness	103
Table (16):	Comparison between studied groups as regard	104
Table (15)	adropin hormone level	104
Table (17):	Correlations between patients groups as regard	105
	adropin level	105

∠List of Table

Table No	Subjects	Page
Table (18):	Validity of adropin among diabetics with IHD	
	and control	107
Table (19)	Validity of adropin among diabetics without IHD	
	and control	108

LIST OF FIGURES

Figure No	Subjects	Page
Figure (1):	Pathophysiology of type 2 diabetes mellitus	6
Figure (2):	Pathophysiological effects of the polyol pathway	12
Figure (3):	Hexosamine pathway	14
Figure (4):	Protein kinase C role in Diabetes mellitus	16
Figure (5):	Pathogenesis of diabetic complications via	
	several potential mechanisms	17
Figure (6):	Glucose oxidation pathway	20
Figure (7):	Pathogenesis of diabetic nephropathy	26
Figure (8):	PKC in diabetic retinopathy	27
Figure (9):	Adropin structure	32
Figure (10):	Adropin in tissues and body fluids	34
Figure (11):	Effects of adropin	36
Figure (12):	Adropin and NASH progression	40
Figure (13):	Adropin levels & Endothelial cell activation	41
Figure (14):	Adropin signaling pathway in endothelium	43
Figure (15):	Potential roles of adropin	44
Figure (16):	Adropin effects	47
Figure (17):	Carotid intima media thickness	58
Figure (18):	Pathophysiological events leading to vascular	
	complications in T2DM patients	61
Figure (19):	Endothelial dysfunction in diabetes:	
	Hyperglycemia leads to increase production of	
	ROS and RNS resulting oxidative stress.	
	Oxidative stress	64
Figure (20):	Insulin Resistance and Endothelial Dysfunction	69
Figure (21):	Comparison between studied groups as regard	
	sex	97
Figure (22):	Comparison between studied groups as regard	
	Hypertension	97
Figure (23):	Comparison between studied groups as regard	
	age	98
Figure (24):	Comparison between studied groups as regard	
	body mass index	99

€ List of Figures

Figure No	Subjects	Page
Figure (25):	Comparison between studied groups as regard	
	glycated hemoglobin.	101
Figure (26):	Comparison between studied groups as regard	
	insulin resistance.	102
Figure (27):	Comparison between studied groups as regard	
	carotid intima media thickness	104
Figure (28):	Comparison between studied groups as adropin	
	level	105
Figure (29):	Correlation between carotid intima media	
	thickness and adropin concentration within	
	diabetic without IHD group	107
Figure (30):	Correlation between fasting insulin and adropin	
	concentration within diabetic without IHD group	107
Figure (31):	ROC curve between diabetic with IHD group and	
	control	108
Figure (32):	ROC curve between diabetic without IHD group	
-	and control	109

INTRODUCTION

Type 2 diabetes was referred to as "noninsulindependent diabetes" accounts for 90–95% of all diabetes. This form includes individuals who have relative insulin deficiency and have peripheral insulin resistance. At least initially, and usually throughout their lifetime, these individuals may not need insulin treatment to survive (*ADA* ., 2019)

Diabetes Mellitus is the most frequent endocrine disease in developed countries estimated to have affected 366 million people worldwide and is expected to nearly double by 2030 owing to an increase in obesity, life span extension, and better detection of the disease. (*Gupta et al.*, 2014).

It is widely accepted that in DM there is an impairment of endothelial nitric oxide synthase (eNOS) activity as well as enhancement of production of reactive oxygen species (ROS), resulting in diminished nitric oxide (NO) bioavailability and the consequent vascular alterations (*Tousoulis et al.*, 2012)

DM has many ways of leading to endothelial dysfunction. The increased oxidative stress, the alteration of lipogenesis, the reduction of nitric oxide, and the alteration of endothelial progenitor cells (EPC) function create what is called the diabetic state, in which the